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ABSTRACT

Trends in current weather research involve active phased-array radar systems that have several advantages

over conventional radars with klystron or magnetron transmitters. However, phased-array radars generally

do not have the same peak transmit power capability as conventional systems so they must transmit longer

pulses to maintain an equivalent average power on target. Increasing transmits pulse duration increases range

gate size but the use of pulse compression offers a means of recovering the otherwise lost resolution. To

evaluate pulse compression for use in future weather radar systems, modifications to a weather radar simu-

lator have been made to incorporate phase-coding into its functionality. Data derived from Barker-coded

pulses with matched and mismatched filters were compared with data obtained from uncoded pulses to

evaluate the pulse compression performance. Additionally, pulse compression was simulated using data

collected from an experimental radar to validate the simulated results. The data derived from both experi-

mental and simulated methods were then applied to a fuzzy logic tornado detection algorithm to examine the

effects of the pulse compression process. It was found that the fuzzy logic process was sufficiently robust to

maintain high levels of detection accuracy with low false alarm rates even though biases were observed in the

pulse-compressed data.

1. Introduction

There is an increasing interest in utilizing active phased-

array radar systems with lower-power aperture products

in meteorological applications (Zrnić et al. 2007; Weber

et al. 2007). This has led to examining methods that can

recover lost sensitivity due to peak transmit power limita-

tions resulting from the use of solid-state power amplifiers.

One such method is pulse compression, which involves

coding the transmitted signal in such a way that, upon de-

coding, the range resolution and signal detectability are

enhanced (Skolnik 1990; Nathanson 1991). The technique

is not without its drawbacks, in that it creates range–time

sidelobes that can corrupt the desired main lobe signal as

well as increasing the minimum range of the radar. These

two effects, however, can be mitigated by using different

types of codes that can vary, for example, in length, type,

bandwidth, and sidelobe suppression. Of particular im-

portance, greater sidelobe suppression, as described by

the integrated sidelobe level (ISL), leads to more accurate

estimation of meteorologically relevant products such as

reflectivity and radial velocity.

In the present study, a phase-coding capability has been

incorporated into a weather radar simulator to examine

a small set of pulse compression schemes. Specifically,

Barker phase codes with matched and mismatched filters

have been evaluated to demonstrate the accuracy of such

a system as well as investigating its applicability in tor-

nado detection. Whereas matched filters are specifically
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designed to maximize the signal-to-noise ratio of the back-

scattered signal, mismatched filters aim to suppress the ef-

fects of range–time sidelobes. Additionally, data obtained

from an experimental weather radar were artificially phase

coded to simulate pulse compression in order to validate

the weather radar simulator results as well as to examine

any additional effects that may be encountered in an

operational environment.

Traditional tornado detection algorithms use shear

signatures to determine the presence of a tornado. The

method employed here utilizes traditional signatures in

conjunction with spectral information to improve de-

tection performance within the context of a fuzzy logic

system. The fuzzy logic system is a simplified version of

the Neuro-Fuzzy Tornado Detection Algorithm (NFTDA)

proposed in (Wang et al. 2008) in that the neural network

has been removed to stabilize comparisons between pulse

compression methods.

The remaining portion of the paper is organized into

four additional sections with the next section covering

background information concerning pulse compression,

simulation procedures, fuzzy logic tornado detection, and

the performance evaluation methodology. The third sec-

tion briefly describes the data collection methods while

the fourth examines the results of the data collection from

both the radar simulator and field data that have been

modified to mimic phase coded data. The last section

draws the conclusions from the study.

2. Background

a. Pulse compression

Pulse compression involves transmitting a wideband

signal coded in either frequency or phase and decoding

the return signal through filtering, which results in in-

creased average transmit power and enhanced range

resolution compared to an identical system that does not

include pulse compression (Skolnik 1990). Phase codes

partition the transmitted pulse into segments of equal

time duration, or subpulses, and then switch the phase of

the signal at specified segments. In particular, binary

phase codes switch the phase between two values, usu-

ally 0 and p, 0 and 1, or 1 and 2. The amount of com-

pression possible is equivalent to the time–bandwidth

product (BT) of the code, which is the product of the

signal bandwidth and signal total duration. Bandwidth

of a phase-coded signal is calculated with

B 5
1

t
, (1)

where t is taken to be the code subpulse length. The

return signal power increase is proportional to the code

length while the range resolution is inversely related to

bandwidth as given by

Dr 5
c

2B
. (2)

This shows that decreasing subpulse duration results in

a corresponding enhancement in range resolution re-

gardless of the total pulse length. See Skolnik (1990) and

Nathanson (1991) for more details.

One problem with pulse compression is that it creates

range sidelobes, artifacts produced by the compression

process whereby returns from other ranges contaminate

the signal at the desired range. This corruption alters the

in-phase and quadrature (I and Q) time series data so

that estimates based upon these data could be in error.

Fortunately, sidelobe suppression filters can be included

in the pulse compression scheme that reduce the amount

of corruption in the data, resulting in more accurate esti-

mations. This addition comes at the cost of a slightly de-

creased signal-to-noise ratio (SNR), increased minimum

range, and increased complexity. The ISL metric indicates

the amount of sidelobe corruption by comparing the total

power contained within the sidelobes to the main lobe:

ISL 5 10 log�
i51

x2
i

x2
0

. (3)

In this equation, x0 refers to the main lobe magnitude

while xi refers to the ith-range sidelobe, with improve-

ment being indicated by a reduction in its value. This

metric is of great importance in meteorological appli-

cations since the backscattered signal is spread over

several range gates. An attractive property of the Barker

codes is that they have uniformly distributed sidelobes

about the main lobe when decoded with a matched filter

and have a mainlobe peak that is higher than the side-

lobes by a factor equal to the code length (Skolnik 1990;

Nathanson 1991). For example, a 5-bit Barker code in

conjunction with a matched filter will produce a main

lobe 5 times higher than the sidelobes. Errors also can be

produced by targets with radial velocities that can alter

the phase of the backscattered signal, but they are neg-

ligible at this transmitting frequency and pulse duration

since the phase change is much less than 458 (Nathanson

1991). While other pulse compression schemes involve

changing the transmitted pulse frequency, we have chosen

to concentrate on binary phase coding.

b. Simulation procedure

The Time Series Weather Radar Simulator (TSWRS;

Cheong et al. 2008) was used to create in-phase and
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quadrature (I and Q) time series data for a case involv-

ing a tornadic supercell as modeled by the Advanced

Regional Prediction System (ARPS; Xue et al. 2003).

The TSWRS is a three-dimensional radar simulator con-

sisting of an ensemble of thousands of scatterers placed

within the field of view (i.e., all the radar resolution vol-

umes along a radial) of the virtual radar. The meteoro-

logical fields used as input to the simulator correspond to

output data from the ARPS numerical simulation model

developed at the Center for the Analysis and Prediction

of Storms (CAPS) at the University of Oklahoma. The

spatial and temporal resolutions of the ARPS output

used in this study were 25 m and 1 s, respectively. To

begin the simulation process, scatterer characteristics are

initialized from a known ARPS dataset where a scatterer

can be thought of as a point target, which has been given

properties that correspond to the meteorological pa-

rameters of a radar resolution volume. At the next time

step, the scatterer positions are updated according to the

wind field and their corresponding properties are also

updated at their new locations. The return signal ampli-

tude and phase from each scatterer are then processed via

Monte Carlo integration to calculate time series of the

desired meteorological signals. The I and Q data were

then processed to calculate the velocity difference (DV),

spectrum width (sy), spectral flatness (ss), phase of ra-

dially integrated bispectrum (P; Wang et al. 2008; Yu

et al. 2007), and eigenratio (x; Yeary et al. 2007) for use in

a fuzzy logic tornado detection algorithm (FLTDA).

The simulation begins with the input of ARPS data

into the TSWRS and the initialization of the scatterer

properties. The simulations used 30 000 scatterers for

the standard-resolution case while those incorporating

pulse compression increased the number of scatterers

proportionally to the increase in range resolution so that

the same average scatterer density of 20 per resolution

volume would be created. This scatterer density was cho-

sen to balance computational speed with enough targets to

create a realistic simulation of radar return signals. Next,

the pulse is propagated throughout the radar field of view

on a gate-by-gate basis, switching the phase code over

the appropriate range gates. The radar then receives the

returns from the scatterers and composes the signal.

Mathematically, this step, taken from Mudukutore and

Chandrasekar (1998), can be described by

y(i, j) 5 �
8m1n�15 j

x
i
(m, n). (4)

After the signal is composed, the data are decoded through

the filtering process to produce estimates of the reflec-

tivity, radial velocity, and the parameters needed for input

into the tornado detection algorithm using the covariance

method (Doviak and Zrnić 1993). A graphical depiction

of this process is shown in Fig. 1. An average signal-to-

noise ratio of 70 dB was set for cases using the TSWRS to

provide for a verification of the concept before evaluating

it under more realistic conditions.

While the matched filter gives an impulse response

that is a time-reversed replica of the transmitted signal

(Cook and Bernfeld 1993), the mismatched filter oper-

ates on the output of the matched filter for this appli-

cation. The mismatched filter was designed using the

method from Key et al. (1959) for the 5- and 13-bit co-

des. The mismatched filter coefficients calculated from

this process were then inserted into the simulation after

matched filtering to provide for improved sidelobe

suppression. The ISLs achieved are 28.0 and 218.8 dB

for the 5-bit Barker code and 211.5 and 225.0 dB for

the 13-bit Barker code using matched and mismatched

filtering, respectively. The additional sidelobe suppres-

sion offered by the mismatched filters means that targets

outside the range of interest would not have as large of

a corrupting effect on the calculated parameters, such as

reflectivity, for that particular range bin.

c. Experimental weather radar procedure

To validate the weather radar simulator results as

well as examine any additional effects that may be en-

countered in an operational environment, data obtained

from an experimental weather radar have been artifi-

cially phase coded to simulate pulse compression. The

radar used in this experiment, is the prototype Weather

Surveillance Radar-1988 Doppler (WSR-88D) at Norman,

Oklahoma (KOUN), which has been modified to include

dual-polarization (Doviak et al. 2002). Pulse compres-

sion was not used in the field data collection but rather

was simulated by artificially switching the phase of the

raw time series data over the appropriate number of

range gates in accordance with the code. For example, a

13-bit Barker code pulse would extend over 13 range

gates with the phase of the data being altered to replicate

the code as it propagated throughout the radar field of

view. The individual range gates were then summed to

produce a composite signal that was then processed as in

the radar simulator.

d. Fuzzy logic tornado detection

The tornado detection algorithm employed here is

a modification of the NFTDA system proposed by Wang

et al. (2008), derived from Yeary et al. (2007). The al-

gorithm uses fuzzy logic that incorporates the five pa-

rameters previously mentioned, (gate-to-gate velocity

change DV; spectrum width sy; spectral flatness ss; ei-

genratio x; and phase of radially integrated bispectrum,

PRIB or P), simultaneously in order to make a decision
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as to the existence of a tornado. To perform this func-

tion, the algorithm uses membership functions to de-

note the degree of membership in the ‘‘yes’’ or ‘‘no’’ set

given a particular parameter value. The neural network

has been removed from the process in order to stabilize

comparisons between data obtained from nonpulse

compression and pulse compression simulations. The

neural network optimizes the membership functions to

maximize the performance of the algorithm, which is

counter to the intent here of simply comparing non-

compressed and compressed results given a set of mem-

bership functions.

FLTDA utilizes the S- and Z-shaped membership

functions in the fuzzification step, which can be de-

scribed completely by a lower and an upper breaking

point. Use of these one-sided membership functions

implies that the input parameters can be described lin-

guistically as being either ‘‘high’’ or ‘‘low.’’ The S-shaped

membership function is given by

F
j
i (x) 5

0 x , x
1
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, (5)

where x1 and x2 represent the lower and upper break-

ing points, respectively; i is the input parameter; and

j represents the tornadic or nontornadic case (Wang

et al. 2008).

The rule inference step evaluates the strength of each rule,

via the membership function results, in order to provide in-

put into the defuzzification step. As in the NFTDA, the

Mamdani system (Ross 2005) of rule inference was chosen,

where the outputs of the fuzzification step are multiplied

together to determine the rule strength. Defuzzification

completes the process by simply using the maximum value

FIG. 1. Pulse compression decoding process with a matched filter. The phase code is propagated across the domain in time while the signals

from each range gate are summed. The composite signal is then decoded using a matched filter to extract the desired data.
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obtained from the rule inference process to make the final

decision of whether or not a tornado is present.

e. Performance evaluation

The metrics used to describe the performance of the

FLTDA are the same as those used in forecast verification

(Murphy 1996). The process begins with the definition of

a set of scenarios that describes the possible outcomes of

the detection process. This is analogous to the construc-

tion of a 2 3 2 contingency table denoting hits, misses,

false alarms, and nulls. A hit is defined as detecting a

tornado within the area defined as containing a tornado.

A miss is defined as not detecting a tornado when there

was one present within the time step. A false alarm occurs

when a tornado is detected outside of the area containing

the tornado or if a detection is made when no tornado is

present. The null state simply means that no detection

was made when the tornado was not present. For each

time step, or image, the location of the detections was

compared to the area defined as containing the tornado

when it was present. This area was defined as a circle

having a radius of 200 m, which matched the estimated

size of the vortex using ARPS data. The location of the

tornado was determined by the location of the mini-

mum pressure in the domain corresponding to the image.

Formation of the tornado was determined to occur when

a fully developed vortex formed in the density informa-

tion at the lowest height of the ARPS simulation.

The performance of the algorithm was calculated over

the entire simulation on a per image basis by calculating

skill scores described below. The intent of the method was

to analyze both the spatial and temporal levels of accuracy

of the algorithm so that multiple hits and false detections

for a single image were considered as one event. If a hit

and a false detection were made for an image, then both

events would be scored. This type of scoring led to sample

sizes that could exceed the number of images for a simu-

lation. The overall performance of the system could not be

totally described by one metric, so four metrics were used

consistent with that found in Mitchell et al. (1998). Shown

below are the probability of detection (POD), false alarm

ratio (FAR), critical success index (CSI), and the Heidke

skill score (HSS) for each simulation (Wilks 2005):

POD 5
a

a 1 c
, (6)

FAR 5
b

a 1 b
, (7)

CSI 5
a

a 1 b 1 c
, and (8)

HSS 5
2(ad� bc)

(a 1 c)(c 1 d) 1 (a 1 b)(b 1 d)
. (9)

In all of these equations, a is the number of hits, b is the

number of false alarms, c is the number of misses, and

d is the number of nulls.

The POD describes the likelihood of detecting an

event given that the event occurs, with a score of 1

corresponding to perfect detection. The FAR is the ratio

of false detections to total detections and is typically

used in conjunction with POD. A score of 0 means that

no false detections were made. CSI indicates the pro-

portion of events correctly detected given that null cases

are removed, where a score of 1 is perfect. Finally, the

HSS measures the accuracy of the algorithm relative to

that which would be detected by random chance. In

other words, it calculates a score after removing hits that

would have occurred solely by random chance.

The process of tornado detection and its performance

hinges upon there being actual differences between torna-

dic and nontornadic signatures as well as the data collection

method being able to accurately estimate those signatures.

Brooks (2004) described a model for tornado-warning per-

formance that is similar to the process defined here. The

analogous point made was that greater separation between

distributions generally leads to better performance. For the

FLTDA, the distributions are those created for the five

input parameters through sampling of the simulation. These

distributions served as the foundation for defining the

membership functions and adjusting them accordingly

to improve detection performance. In terms of distribu-

tions, tornadic signatures typically have large gate-to-gate

velocity differences, large spectrum widths, small spectral

flatness, large eigenratios, and large PRIB.

The tornadic and nontornadic distributions of the pa-

rameters were created by setting a search area around the

tornado and then dividing the signatures inside and out-

side of the search area between tornadic and nontornadic

sets, respectively. This process was completed for all im-

ages, which were then summed to produce histograms of

the signatures. The histograms were then used for com-

parison against the membership functions to examine the

applicability of those breaking points to that simulation. If

significant deviations between the membership functions

and the histograms were found and believed to be a sig-

nificant source of error, then the breaking points for those

membership functions were adjusted. This process was

repeated until the histograms and membership functions

appeared to match in a qualitative sense.

3. Data collection

a. Weather radar simulator data

The test case for all simulations consisted of 99 images

representing a small time segment of a tornadic supercell

394 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 28



thunderstorm as modeled by the ARPS. Data were

gathered using the TSWRS operating at 3.2 GHz. The

pulse width was fixed at 1.57 ms with a pulse repetition

interval of 1 ms, giving an unambiguous range and ve-

locity of 150 km and 23.5 m s21 respectively.

b. KOUN data

A tornado was tracked by KOUN on 10 May 2003 that

provided I and Q data for volume scans at 0337, 0343, and

0349 UTC. The range resolution was 250 m with an un-

ambiguous velocity of 35 m s21 with data being gathered

every 18 with a 18 beam resolution. During these times, the

tornado was located approximately 40 km away from

the radar and reached a maximum intensity of EF4 on the

enhanced Fujita scale. Phase coding was accomplished by

switching the phase of I and Q data over the appropriate

number of range gates, which were then added together to

simulate a long, coded pulse. Processing of the data was

completed using the same method as that used for the

TSWRS scenarios.

4. Experimental results

a. Weather radar simulator results

The TSWRS integrated a high-resolution dataset

that contained a tornado within the simulated super-

cell thunderstorm. The radar range resolution was set to

235 m and served as the standard resolution definition.

This resolution was chosen in order to maintain consis-

tency with other informal studies that utilized the weather

radar simulator. Due to computational limitations in terms

of time, memory, and the extracted ARPS dataset, it was

not possible to simulate Barker codes that would recover

range resolution to 235 m. This forced the analysis to take

the approach of comparing results between uncoded and

coded data with smaller range gate spacing (i.e., finer

resolution).

The pulse compression process correlates the return

signals in range since the pulse extends over a number

of range gates. The amount of interference impressed

upon the desired signal from all the other range gates is

expressed through the ISL. Therefore, a reduction in ISL

should produce more accurate estimates of meteorologi-

cal parameters such as reflectivity. Indeed, this is the case

as is shown in Table 1, which presents the mean and

standard deviation of Z, yr, and all five of the fuzzy logic

parameters. However, it was found that many of the pa-

rameters displayed varying degrees of bias. One notable

case was that for spectral flatness, which was observed to

have a strong, negative bias. The root cause is that the

pulse compression process acts as a weighted averaging

process that serves to reduce the variance of the I and Q

data. This implies that the results differ at the spectral

level, as shown in Fig. 2 where the mismatched filter better

approximates the uncoded spectrum. This effect on the

input parameters is summarized in Table 2 where the

biases are separated into tornadic and nontornadic cases.

TABLE 1. Error analysis for the 5-bit Barker code.

Matched filter Matched filter Mismatched filter Mismatched filter

Parameter mean std dev mean std dev

DV (m s21) 20.07 1.46 20.03 0.91

ss (dB) 21.25 1.99 21.18 1.73

x 2 3 1024 22 3 1024 1 3 1024 12 3 1024

P (8) 0.22 3.02 0.16 2.68

sy (m s21) 0.17 0.83 0.11 0.53

Vr (m s21) 20.02 1.14 216 3 1024 0.72

Z (dB) 1.18 2.07 0.35 1.22

FIG. 2. Comparison of two tornadic spectra derived from uncoded and coded pulses.
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The statistics were averaged for both matched and mis-

matched filters with a majority of the bias deriving from

the matched filter cases. Of note, it was found that the

errors for tornadic cases showed a greater error than

nontornadic cases. The PRIB was the only parameter that

did not demonstrate any bias in excess of 10%, while the

eigenratio exhibited a strong positive bias for both tor-

nadic and nontornadic signatures.

A contour plot of error in estimating Z using both

matched and mismatched filters is shown in Fig. 3. The

contour plots are normalized using the logarithm of the

data to bring out the fine details. The x axis is the uncoded

reflectivity gradient calculated along a radial, which has

been smoothed by a rectangular window, in other words,

a 13-point moving average. The first point to be made is

that while decreasing ISL only reduces the mean error

slightly, it does significantly reduce the variation of the

error considerably over a wide band of gradients. The

second point is that the error is asymmetric about both

horizontal and vertical axes. While a complete explana-

tion for this behavior is not proposed here, the asym-

metry in error (i.e., about the 0-dBZ axis) may be due to

the sidelobe structure of the code. The 13-bit as well as

the 5-bit Barker codes are the only two code of this type

that have all positive sidelobes, implying that the code

would be biased toward overestimating the reflectivity

since any interference would be additive. The asymmetry

in the vertical direction (i.e., about the 0 dBZ m21 axis)

could simply be due to the simulation not containing

enough samples that had a strong positive reflectivity gra-

dient to show up in the data. To put the scale into per-

spective, a value of 0.1 corresponds to roughly 5 out of the

600 000 total points calculated.

Separating the signatures between tornadic and non-

tornadic cases resulted in Fig. 4, where some clear dis-

tinctions can be made between parameters. Most of the

nontornadic signatures have a DV of less than 10 m s21

while the tornadic signatures range fairly uniformly in

value from 20 to over 40 m s21. For spectral flatness, the

nontornadic signatures tend to increase in frequency start-

ing at around 10 dB, peaking at about 20 dB, and then

trailing off by about 25 dB. A less clear example is that

for PRIB, where the tornadic and nontornadic signatures

exhibit a Gaussian shape with the only difference being

that the tornadic signatures have a slightly higher fre-

quency at higher PRIBs.

Detection statistics of the FLTDA process that utilize

DV, spectrum width, and spectral flatness as the input

parameters are shown in Table 3. High POD, CSI, and

HSS are coupled with a low FAR as is desired. The

membership functions were manually optimized to maxi-

mize the performance of the algorithm for the matched

filter case. Although the matched filter data have been

shown to be less accurate than those derived from the

mismatched filter, they can still produce high levels of

performance. The reason being that the fuzzy logic ap-

proach leverages differences between distributions sepa-

rately from the accuracy of the data resulting in essentially

a decoupled problem. Greater separation between the

tornadic and nontornadic signatures generally improves

performance. It was also found that not all information

inserted into the process improved performance. Some

of the distributions, such as PRIB, have significant over-

lap between the two types of signatures that can result

in erroneous classification. Examining Table 3 again

shows that the mismatched filter performs worse than

the matched filter. The cause is that the mismatched

filter has several ‘‘misses’’ in its simulation that can be

TABLE 2. Average percent change in normalized histogram

statistics for coded signatures using a 200-m search radius.

Tornadic Tornadic Nontornadic Nontornadic

Parameter mean std dev mean std dev

DV (m s21) 211.0 28.5 2.4 0.7

ss (dB) 219.8 222.2 26.0 0.2

x 57.7 27.9 9.0 16.1

P (8) 2.7 2.0 1.4 0.4

sy (m s21) 20.5 5.0 7.7 8.9

FIG. 3. Error contours for (top) matched and (bottom) mismatched

filters with a 13-bit Barker code.
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attributed to small DV’s that serve to nullify the other

‘‘hit’’ results.

b. KOUN results

Processing data obtained from KOUN in a similar

manner as for the simulator, the algorithm detected the

tornado at the appropriate locations in the three vol-

ume scans as demonstrated in Figs. 5 and 6. However,

the algorithm did not successfully detect the tornado

at 0337 UTC using 5- and 13-bit Barker codes with their

respective mismatched filters. Suppression of the eigen-

ratio at locations coincident with other tornadic indicators

appears to be the cause of these misses. The algorithm

did detect the tornado for all other cases regardless of

processing method. While locating the tornado was suc-

cessful, the number of detections resulting from pulse

compression increased for most cases compared to that

obtained without pulse compression. Reducing the ISL

appears to alleviate this issue although this may be an

artifact of the small number of samples used. The other

item of note is that the PRIB is suppressed from the

values obtained without pulse compression. It is un-

known at this time as to the root cause of this obser-

vation, but the overall structure of the PRIB field is

retained for all cases, which still makes it useful as a

discriminator in the FLTDA process.

5. Conclusions

The transition from high peak power transmitters to

low peak power transmit/receive modules in active mul-

tifunction phased-array radars provides significant chal-

lenges and opportunities for enhancing weather radar.

One of these challenges is the recovery of lost range

resolution due to the extension of the transmitted pulse in

order to maintain detectability. This problem can be

overcome through pulse compression techniques as has

been demonstrated. TSWRS has been successfully mod-

ified to incorporate Barker phase coding into its opera-

tion. The integration of these two capabilities creates

a flexible platform from which pulse compression studies

can be conducted. Pulse compression, however, is not

without drawbacks; most notable is the creation of range–

time sidelobes that act to corrupt data at the desired

range. This interference can be reduced through the use

of sidelobe suppression filters as realized through the

FIG. 4. Normalized histogram of signatures using a 5-bit Barker code with matched filtering in the TSWRS. The search radius was set to

50 m and the membership functions for the yes and ‘no sets are represented by the dashed lines. Performance improved greatly as the

distinction between histograms became clearer and the breaking points were adjusted accordingly.

TABLE 3. Detection statistics for FLTDA.

Uncoded Matched Mismatched

POD 0.99 0.96 0.83

FAR 0.14 0.14 0.17

CSI 0.85 0.83 0.71

HSS 0.69 0.65 0.43
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implementation of mismatched filters in this study. In

weather applications the metric of interest is the ISL since

weather echoes are widely distributed, and it has been

shown that accuracy is improved as ISL is decreased.

However, biases in the estimation of spectral parameters

used in the FLTDA were observed, especially in spectral

flatness. It seems plausible that most of these biases can

be attributed to the range correlation effect and could be

investigated further. Overall, there does not appear to be

any strong negative effects from incorporating pulse

compression into the simulated or actual radar system.

The use of a fuzzy logic system successfully integrated

several parameters into a unified framework as applied to

the tornado detection problem. The FLTDA performed

FIG. 5. Snapshot of the radial velocity and the five fuzzy logic input parameters used in the detection process derived from KOUN data

taken at 0343 UTC. The black Xs indicate positive tornado detections by the algorithm using uncoded pulses. Shown are the (top left)

radial velocity, (top right) spectral flatness, (middle left) eigenratio, (middle right) phase of the radially integrated bispectrum, (bottom

left) spectrum width, and (bottom right) the gate-to-gate velocity change.
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very well in terms of POD, FAR, CSI, and HSS even with

the observed biases in parameters due to the pulse com-

pression process. It is believed that these biases will be

eliminated with additional sidelobe suppression so that

data obtained with coded pulses will be indistinguishable

from data obtained with uncoded pulses. The fuzzy logic

process was shown to adapt to a range of conditions

through the altering of the breaking points of the mem-

bership functions, which allowed it to maintain a high level

of performance. While a limited number of cases were

used, there does not appear to be any problem with ad-

justing the fuzzy logic system to be successful over a wider

range of conditions than the ones presented here. It was

also shown that accurate estimation of a parameter does

not imply improved detection performance but that de-

tection performance relies on the presence of a consistent

difference between signature types as well as the detec-

tion process being able to exploit those differences in the

FIG. 6. As in Fig. 5, except this case uses a 13-bit Barker code with a mismatched filter.
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most effective manner. Improvement may be possible by

developing membership functions that can describe more

complex shapes than the one-sided ones used here.
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