CORRIGENDUM

CARLTON W. ULBRICH AND PHILIP B. CHILSON

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina

Figure 1 of Ulbrich and Chilson (1994) consists of a plot of the equation

$$v_D = 9.65$$

$$-10.3 \left\{ 1 + 6 \left[\frac{Z}{N_0 10^6 \Gamma(7 + \mu)} \right]^{1/(7 + \mu)} \right\}^{-(7 + \mu)},$$

where v_D (m s⁻¹) is the mean Doppler velocity, Z (mm⁶ m⁻³) is the reflectivity factor, and N_0 and μ are gamma distribution parameters; that is,

$$N(D) = N_0 D^{\mu} \exp(-\Lambda D),$$

where $\Lambda D_0 = 3.67 + \mu$ and D_0 (cm) is the median volume diameter. Although the above equations were given correctly in the paper, the figure was plotted incorrectly. The corrected figure is shown here.

REFERENCES

Ulbrich, C. W., and P. B. Chilson, 1994: Effects of variations in precipitation size distribution and fallspeed law parameters on relations between mean Doppler fallspeed and reflectivity factor. *J. Atmos. Oceanic Technol.*, 11, 1656–1663.

Fig. 1. The dependence of the mean Doppler fall speed on radar reflectivity factor for raindrops. It has been assumed that the size distribution can be approximated by a gamma distribution and that the coefficient N_0 is related to μ by the empirical relation $N_0=6\times 10^4$ exp(3.2 μ). The heavy solid curves depict the maximum deviations from the theoretical expressions due to variations in N_0 of a factor of 10 from the latter relation. Curves are shown for $\mu=-1$, 0, 1, 2, 3 but only those for $\mu=-1$ and 3 are labeled.