CORRIGENDUM

CARLTON W. ULRICH AND PHILIP B. CHILSON

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina

Figure 1 of Ulbrich and Chilson (1994) consists of a plot of the equation

\[v_D = 9.65 - 10.3 \left\{ 1 + 6 \left(\frac{Z}{N_0 10^6 T(7 + \mu)} \right)^{1/(7 + \mu)} \right\}^{-(7 + \mu)}, \]

where \(v_D\) (m s\(^{-1}\)) is the mean Doppler velocity, \(Z\) (mm\(^6\) m\(^{-3}\)) is the reflectivity factor, and \(N_0\) and \(\mu\) are gamma distribution parameters; that is,

\[N(D) = N_0 D^\mu \exp(-\Lambda D), \]

where \(\Lambda D_0 = 3.67 + \mu\) and \(D_0\) (cm) is the median volume diameter. Although the above equations were given correctly in the paper, the figure was plotted incorrectly. The corrected figure is shown here.

REFERENCES

Corresponding author address: Carlton W. Ulbrich, Dept. of Physics and Astronomy, Clemson University, Clemson, SC 29634-1911.

© 1996 American Meteorological Society

Fig. 1. The dependence of the mean Doppler fall speed on radar reflectivity factor for raindrops. It has been assumed that the size distribution can be approximated by a gamma distribution and that the coefficient \(N_0\) is related to \(\mu\) by the empirical relation \(N_0 = 6 \times 10^6 \exp(3.2\mu)\). The heavy solid curves depict the maximum deviations from the theoretical expressions due to variations in \(N_0\) of a factor of 10 from the latter relation. Curves are shown for \(\mu = -1, 0, 1, 2, 3\) but only those for \(\mu = -1\) and 3 are labeled.