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PREAMBLE 
 

 Over the years NSSL has been providing technical information to the National Weather 
Service.  This exchange had many forms, from formal reports and algorithms to consultation and 
supply of radar data in real time to the Weather Services Forecast Office.  After the decision to 
evolve its network of WSR-88Ds to keep pace with emerging knowledge and technology the 
NWS provided a spare WSR-88D to NSSL.  Hence, NSSL became the principal NOAA 
Laboratory for evolutionary and revolutionary enhancements of weather radar science and 
technology.  At that time (mid nineties) Doppler Radar and Remote Sensing Research group 
committed to document in report form all significant innovations, changes, and results deemed of 
special value for operational applications regardless whether such writing was formally required. 
This is the fourteenth report in the series since 1997. It describes classification of polarimetric 
radar echoes.  Applications are on data collected during the Joint POLarization Experiment 
(JPOLE) which was conducted from spring of 2002 until summer of 2003.  I was fortunate to 
share the work on polarimetric upgrade of the research and development WSR-88D with 
scientists and engineers second to none.  Allen Zahrai led the team of engineers who designed the 
new processor which enabled scanning strategies and allowed more flexibility than the old 
system.  Mike Schmidt ably assisted with Richard Wahkinney made extensive modifications of 
microwave circuitry and controls.  John Carter contributed to design of microwave circuits and 
with Valery Melnikov made numerous calibration measurements of the two channels. As always I 
relied on my colleague Dick Doviak for support, advice, and technical help. Alan Sigia, from 
Sigmet, resolved numerous technical details needed to operate the RVP7 processor in dual 
polarization mode. The Radar Operations Center (ROC) of NWS contributed the basic RVP7 
processor and display, which was subsequently enhanced to process dual polarization signals.   
 This is the first year that NWS’s Office of Science and Technology specifically and 
generously contributed to the dual polarization effort at NSSL. Thus the report represents our 
continuous commitment to NWS and is part of a cumulative contribution to the Office of Science 
and Technology.    
 
 
October 2003 in Norman 
Dusan S. Zrnic 
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1. Introduction 
 

In the Spring of 2002, several years of effort on the NOAA research WSR-88D radar 
culminated in generation and display of dual polarization radar data and products.  As part of the 
Joint Polarization Experiment (JPOLE), high quality polarimetric data sets were collected over 
the course of the next year.  In total, data were collected for 98 meteorological and non-
meteorological events.  These data are catalogued both chronologically and by event-type, and 
subsequently described within an online database at http://cimms.ou.edu/~heinsel/jpole/database.html 
and http://cimms.ou.edu/~heinsel/jpole/stormtype.html, respectively.  In this report, we present 
analyses that use this large dataset to demonstrate the polarimetric WSR-88D’s ability to: (1) 
improve data quality, and (2) improve hydrometeor identification capabilities.  Complementary 
reports present an analysis of the calibration and performance of the polarimetric NSSL WSR-
88D (Melnikov et al. 2003), an overview of the JPOLE data collection and operational delivery 
(Schuur et al. 2003a), and an analysis of the ability of a polarimetric WSR-88D to improve 
rainfall estimation (Ryzhkov et al. 2003).   
 
2. Description of the classification algorithm 
 
 One of the important advantages of polarimetric weather radar is its ability to 
discriminate between hydrometeor types and non-hydrometeor scatterers.  Our classification 
algorithm is based on the principles of fuzzy logic as outlined in Vivekanandan et al. (1999), 
Zrnic and Ryzhkov (1999), Straka et al. (2000), Liu and Chandrasekar (2000), and Zrnic et al. 
(2001).  According to fuzzy logic methodology, different hydrometeor classes are described by 
the one-dimensional or two-dimensional membership functions that are expressed as follows: 
 
                                                                  F(i)(Vj) = P(i)(Vj)                                                            (1) 
 

or 
 
                                                              F(i)(Z,Vj) = P(i)(Z) PZ

(i)(Vj)                                                (2) 
 

In (1) and (2), Z is the radar reflectivity factor at horizontal polarization and Vj is the jth 
additional radar variable (polarimetric or non-polarimetric).  One-dimensional unconditional 
membership functions P(i)(Z) and PZ

(i)(Vj) characterize distributions1 of Z and Vj for the ith class, 
whereas the membership functions PZ

(i)(Vj) characterize conditional distribution of the variable Vj 
for the ith class for a given Z.  The product of P(i)(Z) and PZ

(i)(Vj) represents the two-dimensional 
membership function characterizing the joint distribution of Z and Vj in the Z – Vj plane for the ith 
class.  One-dimensional membership functions generally have asymmetric trapezoidal shape with 
maximal value of 1 and minimal value of 0 (Fig. 1). 

 
These trapezoidal functions are described by 4 parameters: x1, x2, x3, and x4 as shown in Fig. 1. 
 

                                                           
1 The distributions are similar to probability distributions, but are not normalized. 
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Fig. 1: Trapezoidal membership function 
 
Aggregation value for each class is defined as: 
 

                                                                   )V,Z(FWQ j
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where Wj is the weight assigned to the jth variable and M is the number of variables.  
Hydrometeor class is identified by the maximal aggregation value. 
 
 In our classification analysis, we use both Eq. (1) and (2) to determine the membership 
functions F(i). The choice of Eq. (2) is preferable if the distribution of the variable Vj strongly 
depends on the radar reflectivity as a parameter.  This is usually the case for differential 
reflectivity ZDR in rain, i.e., ZDR increases with increasing Z. 
 
  Five radar variables have been used for automatic classification so far.  These are: (1) 
radar reflectivity Z, (2) differential reflectivity ZDR, (3) cross-correlation coefficient ρhv between 
horizontally and vertically polarized components of the radar return, (4) a texture parameter 
SD(Z) of the Z field, and (5) a texture parameter SD(ΦDP) of the field of differential phase ΦDP.  
The two latter variables are especially efficient for discrimination between meteorological and 
non-meteorological radar echoes.  The parameters SD(Z) and SD(ΦDP) characterize the intensity 
of small-scale fluctuations of Z and ΦDP along the radar ray.  To obtain SD(Z), we average Z data 
(sampled every 0.256 km) along the radial using 1-km-width running average window and 
subtract the smoothed estimates of Z from their original values.  A similar procedure is used for 
computing the parameter SD(ΦDP), but with an averaging window that is two times larger. 
 

Two polarimetric variables, ZDR and ρhv, are smoothed along the radial using a fivr point 
averaging interval. Both ZDR and ρhv should be corrected for noise prior to application of the 
classification algorithm.  This is especially important for light rain, snow, and clear-air echoes 
caused by biological scatterers. ZDR and ρhv are noticeably biased if signal-to-noise ratio (SNR) is 
less than 20 dB. Efficient correction of both variables can be made for SNR > 5 dB. If SNR < 5 
dB, then correction is considered unreliable and no classification is performed. 
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Because the Sigmet RVP7 processor does not provide SNR directly, we estimate SNR 
from radar reflectivity factor Z and distance R using the following formula 

 
                                                  SNR (dB) = Z(dBZ) – 20 log(R(km)) + C,                                 (4) 

 
where the “constant” C is usually between 27 and 33.  The value of C for a particular day of 
observations can be estimated using the scatterplots ρhv

(cor) – SNR, where ρhv
(cor) is the value of the 

cross-correlation coefficient corrected for noise as 
 
                                                                  ρhv

(cor) = ρhv (1 + 1/snr) .                                                (5) 
 

In (5) snr = 100.1 SNR (dB). If the constant C is estimated correctly, then the scatterplot ρhv
(cor) 

– SNR is “flat” , i.e., there is no apparent dependence of ρhv
(cor) on SNR for SNR > 5 dB. Such 

tuning of the constant C is performed automatically during data processing.  Correction of ZDR for 
noise is made according to the formula 
 
                                                   ZDR

(cor)(dB) = 10 log[(α snr Zdr)/(α snr + α - Zdr)],                      (6) 
 
where Zdr = 10 0.1 ZDR(dB) and  α is a ratio of noises in the horizontal and vertical channels. In the 
current version of the classification algorithm, α = 1.48 and 10log(α) = ZDR

(noise) = 1.7 dB.  
 

The classification procedure can be customized according to the user needs.  Different 
sets of radar variables, different classes, and different weight vectors W can be used in the 
classification routine.  For example, the algorithm can be optimized either for discrimination 
between meteorological and non-meteorological scatterers (“meteo” versus “non-meteo”) or for 
distinguishing different categories of meteorological echo (e.g., rain versus hail or snow). 

 
At the moment, we use three different versions of the polarimetric classification 

algorithm with different degree of sophistication.  Classification is performed with the data 
collected at one or two lowest elevations (0.5º and 1.5º).  The same classification principles can 
be applied to the data obtained in vertical cross-section.  However, since the RHI antenna 
scanning is not accepted in the NEXRAD mode of operation, the identification of radar echoes at 
two lowest PPI scans was our primary task during JPOLE. 
 
2.1 Version 1: Meteorological versus non-meteorological scatterers 

 
Version 1 represents the simplest type of the classification algorithm.   It proves to be 

very efficient at discriminating between radar echoes caused by meteorological and non-
meteorological scatterers such as ground clutter / anomalous propagation (AP), insects, birds, 
bats, and chaff.  Three classes are identified according to this classification scheme: (1) 
hydrometeors of meteorological origin, (2) ground clutter / AP, and (3) non-meteorological 
scatterers in the atmosphere (insects, birds, bats, and chaff). All five radar variables are used for 
identification.  The parameters x1 – x4 describing five one-dimensional membership functions for 
three classes are presented in Table 1.  These functions are also displayed graphically in Fig. 2. 
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Fig. 2: Membership functions characterizing three classes: (1) meteorological scatterers (blue lines), (2) 
biological scatterers (green lines), and (3) ground clutter / anomalous propagation (red lines) with 5 radar 
variables. 
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Table 1: Membership function parameters for three classes. 

  
P(Z) 
 GC/AP BS MS 
x1 (dB) 15 5 5 
x2 (dB) 20 10 10 
x3 (dB) 70 20 65 
x4 (dB) 80 30 75 
PZ(ZDR) 
x1 (dB) -4 0 fl-0.3 
x2 (dB) -2 2 fl 
x3 (dB) 1 10 fh 
x4 (dB) 2 12 fh+0.3 
P(ρhv) 
x1 0.5 0.3 0.85 
x2 0.6 0.5 0.97 
x3 0.9 0.8 1.0 
x4 0.95 0.83 1.01 
P(SD(Z)) 
x1 (dB) 2 1 0 
x2 (dB) 4 2 0.5 
x3 (dB) 10 4 3 
x4 (dB) 15 7 6 
P(SD(ΦDP)) 
x1 (deg) 30 8 0 
x2 (deg) 40 10 1 
x3 (deg) 50 40 15 
x4 (deg) 60 60 30 

 
In Table 1, GC/AP stands for ground clutter / anomalous propagation, BS for biological 
scatterers, and MS for meteorological scatterers; fl and fh are functions of radar reflectivity  
 
                                                    fl = -0.50 + 2.50 10-3 Z + 7.50 10-4 Z2                                        (7) 
 
                                                     fh = 0.08 + 3.64 10-2 Z + 3.57 10-4 Z2,                                      (8) 
 
where Z is expressed in dBZ. One-dimensional membership functions F(i)(Vj) as defined by Eq. 
(1) are used  for all variables and classes.  The only exception is made for the membership 
function F(Z,ZDR) of the meteorological scatterers, which is defined according to (2). Equal 
weights are given to all five radar variables in Eq. (3).  
 
2.2 Version 2: The “summer” classification algorithm 

 
 Version 2 of the classification algorithm enables discrimination between radar echoes 
caused by (1) ground clutter and AP, (2) biological scatterers, (3) “big drops”, (4) light rain, (5) 
moderate rain, (6) heavy rain, and (7) rain / hail mixture.  In this algorithm, the term “big drops” 
is used to describe a raindrop spectrum that is characterized by a relatively larger number of big 
drops and fewer small drops than encountered in most DSDs.  This skewed type of drop size 
distribution (DSD), which is commonly observed in zones of rapidly developing convection, has 
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important prognostic value for weather forecasters.  Three radar variables: Z, ZDR, and ρhv are 
used for classification.  Historically, this is the earliest version of the classification algorithm.  
Several examples of classification using this algorithm are presented in section 4. Two texture 
variables, SD(Z) and SD(ΦDP), will be added to a  later version of the algorithm. 
 
 The two-dimensional membership functions F(i)(Z,Vj) determined from (2) are used in 
this version of the classification algorithm.  The parameters of the membership functions for all 7 
classes are presented in Table 2. 
 
Table 2: Membership function parameters for the seven classes in the “summer” classification 
algorithm. 
 
P(Z) 
 GC/AP BS BD LR MR HR R/H 
x1 (dB) 25 5 15 5 30 40 45 
x2 (dB) 35 15 20 10 35 45 50 
x3 (dB) 75 20 45 35 45 55 75 
x4 (dB) 85 30 50 40 50 60 80 
PZ(ZDR) 
x1 (dB) -5 1 fh-0.3 fl-0.3 fl-0.3 fl-0.3 -0.3 
x2 (dB) -3 3 fh fl fl fl 0 
x3 (dB) 0 7 fb fh fh fh fl 
x4 (dB) 2 9 fb+0.3 fh+0.3 fh+0.3 fh+0.3 fl+0.3 
PZ(ρhv) 
x1 0.45 0.45 0.89 0.89 0.89 0.89 0.84 
x2 0.55 0.55 0.90 0.90 0.90 0.90 0.85 
x3 0.80 0.80 1.00 1.00 1.00 1.00 0.96 
x4 0.90 0.90 1.01 1.01 1.01 1.01 0.97 
 
In Table 2, GC/AP stands for ground clutter / anomalous propagation, BS for biological 
scatterers, BD for big drops, LR for light rain, MR for moderate rain, HR for heavy rain, R/H for 
rain/hail mixture; fl and fh are defined by (7) and (8); fb is another  function of radar reflectivity 
given by: 
 
                                                        fb = - 0.20 + 0.108 Z – 6.43 10-4 Z2,                                      (9) 
 
where Z is expressed in dBZ. Equal weights W1 = 1 and W2 = 1 are given to the membership 
functions associated with ZDR and ρhv in Eq. (3). 
 
 Note that some parameters of similar membership functions in Table 1 and Table 2 are 
different because the classification procedure continuously evolved during the JPOLE period.   
Therefore, earlier and later versions of the classification algorithm differ in details. For each 
classification example in this report, we clearly specify the version of the classification algorithm 
used. 
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2.3 Version 3: The “winter” classification algorithm 
 

 In the version of the classification algorithm that is used for cold season weather events, 
we added two categories of snow particles, dry and wet snow, to the list of classes.   This version 
of the algorithm uses Z, ZDR, and ρhv, along with the texture parameter of the Z field SD(Z), to 
perform classification.  It enables discrimination between radar echoes caused by (1) ground 
clutter and anomalous propagation, (2) biological scatterers (including insects and birds), (3) dry 
snow, (4) wet snow, (5) stratiform rain, (6) convective rain, and (7) rain/hail mixture. 

 
Table 3 contains parameters of the membership functions for the “winter” classification 

algorithm.  As in version 2, the two-dimensional membership functions defined from (2) are 
utilized. 

 
Table 3: Membership function parameters for the seven classes in the “winter” classification 
algorithm. 
 
P(Z) 
 GC/AP BS DS WS SR CR R/H 
x1 (dB) 25 5 5 15 5 38 48 
x2 (dB) 35 15 10 25 10 43 53 
x3 (dB) 75 20 25 35 43 53 75 
x4 (dB) 85 30 30 45 48 58 80 
PZ(ZDR) 
x1 (dB) -5 0 -0.3 0.6 fl-0.3 fl-0.3 -0.3 
x2 (dB) -3 3 0 1.0 fl fl 0.0 
x3 (dB) 0 7 0.3 1.8 fb fb fl 
x4 (dB) 2 10 0.6 2.2 fb+0.3 fb+0.3 fl+0.3 
PZ(ρhv) 
x1 0.45 0.45 0.93 0.83 0.97 0.96 0.84 
x2 0.55 0.55 0.94 0.85 0.98 0.97 0.85 
x3 0.70 0.70 0.97 0.94 1.00 1.00 0.96 
x4 0.80 0.80 0.98 0.96 1.01 1.01 0.97 
PZ(SD(Z)) 
x1 (dB) 4 1 -0.5 0 -0.5 -0.5 -0.5 
x2 (dB) 6 2 0.5 1 0.5 0.5 0.5 
x3 (dB) 30 4 3 3 2.5 2 2 
x4 (dB) 32 5 4 4 3.5 3 3 
 
In Table 3, GC/AP stands for ground clutter / anomalous propagation, BS for biological 
scatterers, DS for dry snow, WS for wet snow, SR for stratiform rain, CR for convective rain, and 
R/H for rain / hail mixture; functions fl(Z) and fb(Z) are defined by Eq. (7) and (9). 
 

Several classes of radar scatterers have very distinctive polarimetric properties.  Because 
of this, they can be easily recognized if the fuzzy logic methodology is applied on a pixel-by-
pixel basis.  This means that no analysis of general pattern or surrounding pixels is needed. 
Ground clutter / AP, insects, birds, chaff, hail, wet snow (bright band) belong to this category of 
scatterers.  All are characterized by anomalously low values of cross-correlation coefficient. 
Differential reflectivity is mainly negative for ground clutter / AP, very high positive for 
biological scatterers and chaff, and moderately high for wet snow.  A combination of high Z and 
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relatively low ZDR is a distinctive feature of hail or rain/hail mixture. SD(Z) is usually much 
higher for non-meteorological scatterers (especially for ground radar returns) than for any 
weather hydrometeors. 

 
Discrimination between stratiform rain and dry aggregated snow is a major problem 

because membership functions in the fuzzy logic formalism heavily overlap.  Both classes are 
characterized by relatively low Z and ZDR combined with high ρhv (Ryzhkov and Zrnic 1998). 
Furthermore, there is no distinction in terms of the texture of the Z field as well. 

 
Fig. 3 illustrates three scatterplots of Z versus ZDR obtained from the measurements with 

the KOUN radar for three different types of snow.  Dry aggregated snow was observed over the 
entire state of Oklahoma between 15 and 16 UTC on 6 February 2003.  Seven hours later, the dry 
aggregated snow changed over to more crystallized snow in the very cold air NW of the radar. 
This snow was characterized by a much higher ZDR and a lower Z.  Heavy convective snowfall 
occurred on 24 February 2003 in southern Oklahoma.  The corresponding Z – ZDR scatterplot for 
the period between 22 and 24 UTC is also displayed in Fig. 3.  Radar reflectivities over 50 dBZ 
are unusually high for snow in the latter case, but corresponding values of ZDR are relatively low 
compared to those typically observed at the bottom of the radar bright band.  The region between 
the two curves in Fig. 3 represents locations of Z – ZDR pairs for pure rain as derived form the 
multi-year statistics of DSD measurements in central Oklahoma. 

 
 

 
Fig. 3:  Z – ZDR scatterplots for different types of snow. The two curves confine the “rain” area. 

 
 
 
 
 
 
 
 

 



 13

 
 
 
It is evident that data from rain and snow heavily overlap in the Z – ZDR plane for 

reflectivities between 20 and 40 dBZ.  There is no clear distinction between these two classes in 
KDP and ρhv as well.  A clue for successful discrimination between these classes lies in the fact 
that stratiform rain and aggregated snow are usually separated by the bright band, which has very 
pronounced polarimetric signatures and can be easily detected.  Therefore, rain / snow delineation 
is contingent upon the reliable identification of the radar bright band. 

 
Although it is easier to perform bright band identification with RHIs, we have to do 

classification with PPIs because RHI antenna scanning is not accepted in the NEXRAD mode of 
operations.  Figs. 4 and 5 exhibit the melting level in the fields of Z, ZDR, and ρhv at two lowest 
elevation tilts: 0.5 and 1.5° in the case of a stratiform rain with relatively low bright band.  

 
At both elevations, radar reflectivity gives little clue about the location and height of the 

melting level.  The bright band signature is more pronounced in the ZDR field, particularly at 
higher elevations.  However, the best indication of the melting level is given by ρhv at 1.5°, where 
the cross-correlation coefficient drops abruptly from 0.99 to less than 0.96 at the slant range 
where a radar beam intersects the bottom of the melting layer.  After dropping in the melting 
layer, ρhv tends to increase in dry snow aloft.  This increase, however, might be masked with a 
general decrease of ρhv with range due to weakening of radar signal and broadening of the radar 
beam. It can be shown that ρhv is negatively biased if signal-to-noise ratio is less than 20 dB.  The 
same is true for ZDR.  Thus, an appropriate correction of ρhv and ZDR at low SNR is crucial for rain 
/ snow discrimination. 

 
In the current version of the classification algorithm, slant ranges separating rain and 

melting snow are determined at every azimuth from the radial profiles of corrected ρhv at the 
elevation of 1.5°.  After some editing and median filtering in azimuth, the “bright band contour” 
is generated at 1.5°.  The corresponding “bright band contour” at lower elevations is obtained 
from the one at 1.5° using simple geometric considerations and an assumption of horizontal 
uniformity.  The traditional “fuzzy logic” approach using all available radar variables is then 
applied for classification on a pixel-by-pixel basis at both elevations.  However, categories of rain 
and non-meteorological scatterers are prohibited beyond the “bright band contour” where snow is 
expected.  Similarly, snow is not allowed to appear below bright band.  The bottom panel of Fig. 
5 represents results of rain / snow discrimination for the case of 10/24/02.  Application of this 
algorithm to a winter storm event is presented in section 4.4. 
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Fig. 4: Composite plot of Z, ZDR, and ρhv at El = 
1.5º for stratiform rain on 24 October 2002 (1832 
UTC). 
 

 
 
Fig. 5: Composite plot of Z, ZDR, ρhv, and results 
of classification at El = 0.5º for stratiform rain on 
24 October 2002 (1832 UTC). 
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3. Improvement in data quality 
 

There are several data quality issues that can be addressed with polarimetric radar.  Here 
we list three methods where the large JPOLE dataset is used to demonstrate the following data 
quality improvements: 1) filtering out non-meteorological echoes, 2) improving the accuracy of 
radar reflectivity measurements, and 3) using information on biological scatterers to improve the 
retrieval of Doppler winds in clear air. 

 
3.1 Filtering out non-meteorological echoes 
 
 In most weather-related applications, users prefer to work with fields of radar variables 
that are not contaminated with echoes of non-meteorological origin such as ground clutter / AP, 
insects, birds, bats, and chaff. Meteorological and non-meteorological scatterers possess very 
distinctive polarimetric properties.  A detailed description of polarimetric contrasts between 
weather and non-weather radar echoes, along with several supporting examples, is given in 
section 4.5.  
 
 In order to assess the ability of the KOUN radar to classify meteorological and non-
meteorological scatterers, we have selected 8 cases that exhibited extensive areas of radar echo 
caused by either AP or biological scatterers. A list of these cases is presented in Table 4 
Additional information about the selected cases can be found at 
http://cimms.ou.edu/~heinsel/jpole/database.html and http://cimms.ou.edu/~heinsel/jpole/stormtype.html. 
 
Table 4: List of the JPOLE cases with the most pronounced non-meteorological echoes.  
 
Number  Date Time (UTC) Description 
1 06/13/2002 3 - 9 AP in the rear side of MCS 
2 08/13/2002 9 - 11 AP and Bio mixed with rain 
3 08/24/2002 6 - 9 AP and Bio mixed with rain 
4 08/28/2002 11 - 14 Widespread AP, no rain 
5 09/15/2002 1 - 8 Migratory birds and rain 
6 10/27/2002 2 - 9 Migratory birds and rain 
7 10/29/2002 5 - 13 Migratory birds and light rain 
8 05/01/2003 9 - 12 Very strong and extended AP 
 

For each case using the version 1 of the classification algorithm, we perform echo 
classification every 6 to 15 minutes at the two lowest elevation tilts, 0.5º and 1.5º.  Three classes 
of radar echo: hydrometeors, biological scatterers, and ground clutter / AP are distinguished.  The 
radar data and results of classification for both elevations are then displayed and stored for the 
400 x 400 km area in Cartesian format with a grid resolution 2 x 2 km.  For each event, we 
examined animations of the fields of classified echoes to check spatial and temporal continuity of 
the classification results.  This visual continuity test shows good spatial and temporal 
“coherency” of the classification fields with a consistency that one would expect from common 
sense. 

 
 To our knowledge, there is no well established methodology for quantitative assessment 
of the performance of such classification procedures. Because of lack of verification data at such 
small spatial and temporal scale, accurate ground truth validation is not possible.  Rain gage 
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information can be useful only to determine whether rain is falling in close proximity of the gage.  
Satellite data analysis is another option to assess the possibility of rain or AP over large areas (but 
with more coarse spatial and temporal resolutions).  Validation information regarding biological 
scatterers and their flying habits is also very limited.  In some previous studies (e.g., Moszkovicz 
et al. 1994) an “assessment of well-trained radar operator” was used as a ground truth to validate 
different techniques for AP detection and mitigation.  This criterion is quite subjective and, 
unfortunately, there is no simple way to avoid a certain degree of subjectivity for such a 
validation.  Our approach to validate the ability of the classification scheme to recognize 
meteorological and non-meteorological echoes is also not entirely void of subjectivity.  
 

We select areas of the radar echo at both elevation tilts which should contain only 
weather or non-weather echoes and count the number of 2 x 2 km pixels identified as “meteo” or 
“non-meteo”.   Distances in close proximity to the radar and areas where a complex mixture of 
the echoes from AP, biological, and meteorological scatterers are present have been avoided.  We 
have identified such “test” areas for all events listed in Table 4 and examined multi-hour statistics 
of classification for each of these areas.   The number of pixels identified as “non-meteo” in pure 
rain areas was usually less than 1% of the total number of pixels for which SNR > 10 dB.  A 
similar proportion of misclassification (less than 1 %) was found in an opposite situation - 
“meteo” pixels in the AP areas - provided that SNR is again higher than 10 dB.  The quality of 
classification deteriorates with decreasing SNR (up to 5% of misclassified pixels in several cases 
if SNR > 5 dB).  This deterioration is attributed to the fact that the key polarimetric variables ZDR 
and ρhv are biased by noise and their reliable correction is possible if SNR > 5 – 10 dB.  The use 
of total differential phase ΦDP which is not affected by noise is more promising at relatively weak 
signals. This option will be carefully explored in the near future.  The major problem, however, 
will be the separation of the contributions from the forward scattering and backscattering effects 
in the total differential phase.  Only the “backscattering portion” of ΦDP should be used for 
classification. 
 
3.2 The accuracy of radar reflectivity measurements 
 
 Once the sources of radar echo are identified and “unwanted” echoes are filtered out, the 
next problem is to ensure high accuracy of the radar reflectivity measurements.  The radar 
reflectivity factor Z can be biased due to radar miscalibration, partial beam blockage, and 
attenuation in rain and hail.  The latter factor has usually been ignored at S band. Ryzhkov and 
Zrnic (1995) showed that, for extended regions of heavy precipitation typical for Great Plains, the 
Z bias due to attenuation can be significant.  It was shown, that in pure rain (without hail) such 
bias at S band can be approximately estimated from ΦDP: 
 
                                                                 ∆Z (dB) = 0.04 ΦDP (deg)                                            (10) 
 
Those observational results were supported by theoretical simulations by Bringi et al. (1990). 
Measured differential phases exceeding 100º are very common for precipitation in Oklahoma.  
This means that negative biases of Z over 4 dB in magnitude occur quite frequently at long 
propagation paths in precipitation.  Such biases cause about two times underestimation of rain 
rate if the conventional NEXRAD relation is utilized and poor hail detection at large distances 
from the radar.  An example of significant attenuation along a squall line is presented in Fig. 6.  
In this example differential phase exceeds 250º in the western part of a squall line and the 
corresponding bias of Z is larger than 10 dB!  A gradual decrease of Z with range along the squall 
line is quite obvious in Fig. 6a.  As a result, hail at large distances from the radar is not identified.  
The problem is fixed if radar reflectivity is corrected according to Eq. (10) (Fig. 6b).  Attenuation 
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in hail is much more significant than in rain and the coefficient of proportionality in (10) is even 
higher in the presence of hail along the propagation path.  
 

 
Fig. 6: Radar reflectivity measured and corrected (for attenuation) and measured fields of differential 
reflectivity and differential phase. 16 June 2002, 0201 UTC, El = 0.5º 
 

 Accurate calibration of the radar reflectivity factor still remains a serious problem in the 
WSR-88D radar network.  Recent findings by Gourley et al. (2003) show that Z biases of 2 – 3 
dB are quite common.  The problem of accurate measurements of Z is further exacerbated at the 
lowest elevations where a radar beam can be partially blocked.  One of the great advantages of a 
polatimetric radar is its ability to measure specific differential phase KDP, which is immune to 
radar system miscalibration, beam blockage, and attenuation in precipitation.  Goddard et al. 
(1994) and Gorgucci et al. (1999) suggested a self-consistency check using Z, ZDR, and KDP to 
assess possible biases in Z.  According to this approach, Z, ZDR, and KDP are not independent 
variables in rain, and Z at horizontal polarization can be roughly estimated from ZDR and KDP 
using the following relation 

 
                                                         Z = a + b log(KDP) + c ZDR ,                                          (11) 
 

where Z is expressed in dBZ, ZDR  - in dB, and KDP – in deg/km.  The coefficients a, b, and c in 
(11) depend on a radar wavelength and are relatively insensitive to the drop size distribution 
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(DSD) variations.  We used the multiyear statistics of DSDs in central Oklahoma measured with 
the 2D-video disdrometer to compute radar variables at the wavelength of 11 cm and obtained the 
following coefficients: a = 48.5, b = 11.4, and c = 0.94.  In a companion report (Ryzhkov et al. 
2003), we examine the performance of the polarimetric consistency technique for radar 
reflectivity calibration via direct comparisons of reflectivities measured by the KOUN radar and 
operational KTLX radar located at the distance of 20.3 km from the polarimetric one. For 19 rain 
events (out of total 22 examined) the difference between two estimates (polarimetric and direct) 
was within 1 – 1.5 dB.  We believe that, after some additional refinements, the polarimetric 
consistency technique will provide the accuracy of the radar reflectivity measurements within 1 
dB.  
 
 Specific differential phase KDP does not require calibration, whereas differential 
reflectivity ZDR does.  However, since ZDR is a relative parameter (a ratio), it is easier to calibrate 
ZDR than Z.  As shown by Melnikov et al. (2003), the bias of ZDR was kept under 0.2 dB for the 
KOUN measurements during JPOLE. According to the consistency relation (11), the ZDR 
measurement error of 0.2 dB causes the corresponding error of Z calibration less than 0.2 dB. 
Differential reflectivity measurements can be biased more significantly if the radar beam at 
lowest elevation is partially blocked (Ryzhkov et al. 2002a).  This is the case for the NSSL’s 
research Cimarron polarimetric radar. Ryzhkov et al. (2002a) have developed a methodology for 
the calibration of ZDR in the presence of severe beam blockage.  After ZDR is properly calibrated, 
Eq. (11) can be applied to obtain an unbiased radar reflectivity factor even in the case of 
substantial blockage of the radar beam. 
 
3.3 Doppler wind measurements in clear air 
 
 All methods for Doppler wind measurements in clear atmosphere assume that clear-air 
radar scatterers are ideal tracers of wind and turbulence, i.e., they do not have their own 
component of motion. Biological scatterers like insects, birds, and bats represent the 
overwhelming majority of the clear-air scatterers (along with small-scale nonuniformities of 
refractive index caused by turbulence).  If these biological scatterers are strong flyers, they 
produce a bias in Doppler wind estimates that needs to be eliminated from meteorological 
analysis. It is important to distinguish between passive (mostly insects) and non-passive tracers of 
winds (birds and bats) in order to guarantee acceptable quality of radar wind retrievals in clear 
atmosphere such as VAD (Velocity – Azimuth Display).  It is very common that the VAD wind 
profiles obtained during peaks of nocturnal bird migration in spring and fall are heavily 
contaminated. Zrnic and Ryzhkov (1998) were the first who showed significant differences in 
polarimetric properties of small Rayleigh scatterers like insects and big non-Rayleigh scatterers 
like birds.  Birds usually have much larger differential phase upon scattering δ and lower 
differential reflectivity ZDR than insects.  
 
 At the moment, all versions of our classification algorithm do not make a distinction 
between insects and birds; both are combined into the same “biological scatterers” class.  One of 
the reasons for that is that polarimetric signatures of birds and insects have very pronounced 
azimuthal dependence and at certain azimuths (usually close to the main wind direction) ZDR and 
δ for birds and insects are very similar.  Therefore, their discrimination based on pixel-to-pixel 
fuzzy logic approach might not be efficient at these azimuthal directions.   Nevertheless, there are 
extended areas of radar echo where such classification can be performed in very clear and 
straightforward way.  In other words, the areas of high δ (of the order of 70 - 100º) and relatively 
small ZDR (usually lower than 3 dB) associated with birds can be easily identified and the 
corresponding sectors of wind fields retrieved using the VAD technique should be censored. 
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 Section 4.5 contains more detailed description of polarimetric signatures of insects and 
birds as well as some graphical examples of the differences between them. 
 
4. Hydrometeor classification 
 

In this section, we present case examples that demonstrate data quality, analyses that 
demonstrate statistical improvement in hail detection capabilities, and discussion that summarizes 
the ability of polarimetric data to improve the identification of hydrometeor type within 
precipitation systems.   
 
4.1 Tornadic Supercells 
 

Previous research with the NSSL Cimarron radar (Ryzhkov et al. 2002b) led to the 
discovery of a polarimetric tornado signature associated with the Chickasha, OK airport F3 
tornado of May 3, 1999 (note that a power failure associated with the initial touchdown of the 
larger and more destructive F5 Oklahoma City tornado on May 3, 1999 prevented collection of 
dual-polarization data for that tornado).  The signature at the tip of the hook echo of that storm 
was detected by two polarization parameters: (1) differential reflectivity (ZDR), which had a very 
low values around 0.0, and (2) cross-correlation coefficient (ρhv), which had anomalously low 
values of < 0.7 (and sometimes < 0.5).  The Ryzhkov et al. (2002b) study concluded that the 
signature was associated with or attributed to non-meteorological scatterers that had an irregular 
shape and high refractive index (i.e., tornado debris).  The signature was also found to have time 
continuity with tornado damage and height continuity (in the lower parts of the storm), as might 
be expected with the well-known tornado attribute of being able to loft debris.   

 
As part of JPOLE, considerable KOUN data were acquired in tornadic storms.  In 

particular, May was an active storm time with several damaging tornadoes near KOUN.  Most 
notable were the afternoons and evenings of May 8, 2003 when a violent F4 tornado struck 
Moore, Southeast Oklahoma City, Midwest City, and Choctaw, OK (a 17 mile path length); and 
May 9, 2003 when a strong F3 tornado struck Northeast Oklahoma City, Witcher, and rural parts 
of Jones and Luther, OK (a 18 mile path length).  In addition, 3 weak tornadoes (FO and F1) 
occurred within range of KOUN on May 8, 2003, and 9 weak tornadoes occurred within range of 
KOUN on May 9, 2003.  KOUN tornadic storm data were also collected during lesser tornado 
events on April 19, April 23, May 6, the early morning of May 8, May 15, and May 16.  We 
analyzed the JPOLE data with objectives of: (1) verifying the ZDR and ρhv tornado debris 
signature, (2) better determining the uses and limitations of the signature, and (3) examining the 
dual-polarization data for the purpose of determining additional polarization tornado signatures.  
Examples of the polarimetric signatures associated with the May 8, 2003 and May 9, 2003 
tornadic storms are shown below in Section 4.1.1. 

 
4.1.1 Examples of KOUN data from a tornadic supercell 
 

Figure 7 shows KOUN Z, ZDR, KDP, and ρhv for the May 8, 2003 tornadic supercell 
thunderstorm, which produced an F4 tornado over Moore and southern Oklahoma City, OK.  In 
agreement with the results of Ryzhkov et al. (2002b), a distinct polarimetric signature, which 
consists of a low ZDR and anomalously low ρhv, can be seen at a location of X=9 km, Y=18 km.   
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Fig. 7:  Four panel image for the Moore/Southeast Oklahoma City tornado of May 8, 2003: (upper left) 
reflectivity, (upper right) differential reflectivity (ZDR), (lower left) specific differential phase, and (lower 
right) cross-correlation coefficient (ρhv).  Time is 2228 UTC on May 8, 2003.  The tornado signature in ZDR 
and ρhv is at the tip of the hook echo (X=9 km, Y=18 km). 
 

 
 
Fig. 8: Four panel image of the Northeast Oklahoma City tornado of May 9, 2003: (upper left) reflectivity, 
(upper right) differential reflectivity (ZDR), (lower left) specific differential phase, and (lower right) cross-
correlation coefficient (ρhv).  Time is 0346 UTC on May 10, 2003.  The tornado signature in ZDR and ρhv is 
at the tip of the hook echo (X=7 km, Y=39 km).  The line at 9° azimuth in all four panels indicates the 
location of the RHI depicted in Fig. 10. 
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 This pattern is repeated for the May 9, 2003 tornadic supercell thunderstorm in Fig. 8, 
which shows a similar polarimetric signature in the KOUN Z, ZDR, KDP, and ρhv fields at a 
location of X=7 km, Y= 39 km for the storm that passed through northern Oklahoma City, OK. 
 

During the spring of 2003 data collection, the “summer” classification algorithm (as 
discussed in section 2.2) was run on real-time data and delivered to operational forecasters at the 
Norman, OK NWS forecast office.  This “summer” classification scheme does not contain a 
category for tornadic debris.  Nevertheless, a tornadic signature that was classified as anomalous 
propagation (AP) was consistently identified for the duration of the tornado path, suggesting that 
it might be possible to add a tornadic debris classification category to future versions of the 
algorithm.  Fig. 9, which shows the classification algorithm results for the KOUN Z, ZDR, KDP, 
and ρhv at 0346 UTC, May 10, 2003, also depicts this signature (tornado signature shown as AP at 
the tip of the hook echo).   

 
Finally, we present vertical cross-sections of KOUN Z, ZDR, KDP, and ρhv through the 

May 9, 2003 supercell at 0346 UTC (Fig. 10).  As with Fig. 8, the location of the tornado in these 
cross sections is clearly indicated in all four fields at a range of approximately 39 km.  Fig. 10 
also demonstrates the height continuity of the tornadic signature, which is seen to extend to a 
height of ~ 2.0 km in several of the fields, and provides indications of polarimetric signatures 
aloft that might be used, after additional research, to identify microphysical precursors to 
tornadogenesis.   

 
 

 
 
Fig. 9: Hydrometeor classification results of the May 9, 2003 tornadic supercell at 0346 UTC. Results are 
for an elevation of 0.5° (corresponding to the four data panels in Fig. 8).   
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Fig. 10: Four panel RHI image of the Northeast Oklahoma City tornado of May 9, 2003: (upper left) 
reflectivity, (upper right) differential reflectivity (ZDR), (lower left) specific differential phase, and (lower 
right) cross-correlation coefficient (ρhv).  Time is 0346 UTC on May 10, 2003.  RHI is at a 9° azimuth 
(depicted by the line in all four panels of Fig. 8).  The tornado signature in located at a range of 
approximately 39 km. 
 
4.1.2 Analysis results 
 
The May 8, 2003 and May 9, 2003 datasets, shown above, were given priority for analysis.  One 
limitation of the May 8, 2003 dataset is a data gap of 18 minutes during the F4 tornado.  This gap 
was caused by a tornado-induced power failure when the tornado was in the western part of 
Moore (similar to the May 3, 1999 event discussed above). Data were, however, available for the 
first minute and the last 10 minutes of the tornado’s life.  On May 9, 2003, KOUN operated on 
generator power, and data were continuous.  For both May 8, 2003 and May 9, 2003, volume 
coverage patterns (VCPs) consisted of 15 elevation angles (0.0 to 19.5 deg) collected in 5-6 
minutes (the CONVECTIVE or TORNADO VCPs, see discussion in Schuur et al. 2003a). 
 
After examination of the May 8, 2003 and May 9, 2003 datasets, several results can be stated: 
 

1) The signature is reproducible.  The May 3, 1999 type debris signature was very obvious 
for the strong tornadoes that struck areas with large numbers of structures (F4 on May 8 
and F3 on May 9).  ZDR and ρhv values were also similar to May 3, 1999 and the 
horizontal and vertical extents of the signatures were comparable (horizontal size ~1 km 
and vertical extents of ~2-4 km).   

 
2) A signature is not seen for all tornadoes. The majority of the weak tornadoes did not 

possess definable signatures.  Some of the weak tornadoes were in urban areas where 
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many structures were located, while other weak tornadoes were in rural areas where few 
structures were located.  One possible reason for the inability to detect a signature is that 
the weaker tornadoes (F0 and F1) did not possess winds speeds fast enough to 
significantly damage structures and loft debris.  Another possible reason is that, because 
some of the weaker tornadoes only existed for a few minutes, a debris signature could 
have been missed because of the antenna being at VCP high elevation angles.  However, 
at least two weak tornadoes did possess identifiable signatures. 

 
3) Maximum signature detection ranges could not be determined. The two strongest 

tornadoes were at relatively close ranges (<60 km).  More observations of tornadoes at 
medium ranges (100-150 km) need to be taken and examined.  Weak tornadoes might not 
possess a signature at any range. 

 
4) The ρhv parameter appears to have better signature discriminating power.  Although both 

ZDR and ρhv are useful for the debris signature and should be used together to maximize 
signature detection probability, ρhv appears to have the better signature discriminating 
power because its highly anomalous values are in the debris region.  ZDR values near 0.0 
can occur with precipitation particles, allowing for some ambiguity between debris and 
normally occurring precipitation. On the other hand, ρhv values are confined to a smaller 
range for precipitation particles (usually > 0.9), meaning that debris values (~ 0.7 down 
to below 0.5) are more unique. 

 
5) Other polarization tornado signatures (in addition to the debris signature) are possible, 

but could not be determined by this analysis.  With supercell storms, the type and 
evolution of precipitation particles in the developing rear-flank downdraft and hook echo 
may play important roles in tornadogenesis and tornadogenesis failure.  Unfortunately, 
such evolutions are complicated and require extensive analysis time that was not 
available.  In the limited analysis that was done, no polarization parameter could be 
consistently linked to tornadogenesis in the tornadic supercells.  Furthermore, no 
polarimetric parameter could identify tornadogenesis failure in the non-tornadic 
supercells.  Study of non-tornadic supercells was limited to two storms on May 9, 2003 
that preceded the multi-tornadic supercell.  It still remains very possible that a 
polarization tornadogenesis signature exists, but it will take collection and analysis of 
additional data to find it. 

 
4.1.3 Application of Results 
 
Several comments can be made about the results to date: 
 

1) Utility of the polarization debris signature in NWS tornado warnings and other products: 
The foreseen utility of the debris signature will mostly be in confirming previously 
existing tornado warnings.  Tornado warnings for the May 8, 2003 F4 and May 9, 2003 
F3 had already been issued before the debris signature was seen.  Since it comes from 
debris, the signature has no lead time.  In cases where traditional tornado-warning 
signatures are absent, not detected by radar, or overlooked by forecasters, the 
polarization tornado signature will be very valuable in preventing what otherwise would 
have been missed important warnings.  Recent examples of such misses are Hall/White 
County, Georgia (1998), Salt Lake City, Utah (1999), Xenia, Ohio (2000), Hoisington, 
Kansas (2001), and La Plata, Maryland (2002).  The polarization tornado signature will 
also be very valuable in issuing accurate severe weather warning updates to pinpoint 
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current tornado location and confirm occurrence of damage (based on debris).  Warning 
updates are a current area of emphasis for the NWS and its partners (media, emergency 
managers, etc).  It has been shown that a continuing flow of information greatly helps the 
warning process, and the debris signature will be an aid. 

 
2) Limitation of the polarization debris signature in NWS tornado warnings and other 

products:  The polarization debris signature will not be a source of information to 
conclude that a tornado is not occurring.  Weak tornadoes (at any range from the radar) 
may not produce a debris signature.  Because they haven’t yet been studied, we can’t say 
for sure that structure-damaging strong tornadoes at medium and longer ranges (>100 
km) will have signatures.  Also, no data has yet been collected on strong tornadoes in 
very rural areas where there are very few structures or other objects to be damaged and 
have debris lofted by the wind.  Although unlikely, it’s possible that a few strong 
tornadoes in very open areas may not loft enough debris to have definitive signatures. 

 
3) Need for further data collection and analysis:  The JPOLE experiment was very 

successful in the spring of 2003 in collecting several good tornadic storm datasets.  
However, there have not been enough resources (time or people) to completely analyze 
all of the data.  Other datasets besides May 8, 2003 and 9, 2003 should be analyzed.  
Even if that is done, more data will need to be collected and analyzed to fully understand 
the debris signature, its utility and its limitations.  A polarization precursor signature to 
tornadogenesis may be found with supercells, but its discovery, if found, will await 
further data collection and analysis.  Finally, there is need to collect and analyze data for 
non-supercell tornadic storms.  In particular, squall lines and bow echoes are known to 
produce large numbers of tornadoes, some of them strong tornadoes.  Very little, if any, 
of the data already collected are from tornado-producing squall lines and bow echoes.  
Such cases occur frequently in Oklahoma within range of KOUN.  Data should be 
collected on future events. 

 
 
4.2 Hail 
 

Another goal of JPOLE is to verify and document advantages of hail detection using the 
polarimetric Hydrometeor Classification Algorithm (HCA) compared to the non-polarimetric, 
operational hail detection algorithm (HDA) that is used by the NWS.  As described previously, 
NSSL’s polarimetric the HCA classifies hydrometeor type within each elevation scan.  Therefore, 
when hail is present within a storm, we can pinpoint its location.  Since our goal is to verify the 
algorithm’s ability to identify the presence hail at the surface, we use HCA output at the 0.5° 
elevation.  The operational the HDA (Witt et al. 1998) provides estimates of hail and severe hail 
probability, as well as maximum hail size, anywhere within a storm cell that is identified by the 
Storm Cell Identification and Tracking (SCIT) algorithm (Johnson et al. 1998).  Since HCA 
currently only identifies the presence of hail, the probability of hail product is chosen for this 
algorithm comparison.  The probability of hail is a function of the height of the 45-dBZ echo 
above the environmental melting level, such that higher probabilities of hail correspond with 
higher heights above the melting level (Witt et al. 1998).  Thus, probability of hail forecasts by 
the HDA are founded on a physically-based empirical relationship, applicable to a storm cell, 
whereas classification of hail by the HCA is founded on characteristics of hydrometeors 
themselves, applicable to specific locations within a storm cell.              
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4.2.1 Example of KOUN data for a severe hail storm 
 

During JPOLE, data were collected from 18 events that produced polarimetric signatures 
indicative of hail.  Fig. 11 shows data collected during a severe hail storm that occurred over 
south-central, OK on May 14, 2003.  Public reports indicated that hail with a diameter >13 cm 
had just fallen from the storm centered at approximately X= -10 km, Y= -85 km (the location of 
the 13 cm diameter hail report is indicated by the star in the four panels).  Radar reflectivities in 
the hail core were > 65 dBZ.  This was combined with very low and occasionally negative ZDRs 
and very low ρhvs.  The large regions of negative ZDR and very low ρhv in this storm were 
undoubtedly due to severe differential attenuation.  There were additional indications, especially 
at a lower elevation scan, that severe differential attenuation was impacting the results of the 
HCA.  The HCA result for this case is shown in Fig. 12. 
 
 

 
  

Fig. 11: Fields of polarimetric variables (PPI presentation) of the May 14, 2003 hail event at 0834 UTC.  
PPI is at 0.5° elevation.  The panels display radar reflectivity (dBZ), differential reflectivity (dB), specific 
differential phase (°/km) and cross-correlation coefficient, respectively.  The location of the 13 cm diameter 
hail report is indicated by the star. 
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Fig. 12: Hydrometeor classification results of the May 14, 2003 hail event at 0834 UTC. Results are for an 
elevation of 0.5° (corresponding to the four data panels in Fig. 11).  The location of the 13 cm diameter hail 
report is indicated by the star. 
 
4.2.2 Verification methodology 
 

During the project, two hail chase cars were deployed to intercept thunderstorm cores that 
had the potential to produce hail at the surface (Schuur et al. 2003a). The performance of the 
HCA and HDA is investigated by verifying their respective products against the ground truth 
dataset collected by those vehicles.  This verification process begins by running each algorithm 
during periods comprising the ground truth.  The HCA is run using data collected by the 
polarimetric KOUN radar, whereas the HDA is run using data collected by KTLX, a nearby 
operational WSR-88D radar.  Unfortunately, data were only archived by both radars during 4 of 
the 5 events.  The 11−12 June 2003, low-precipitation supercell case is therefore excluded from 
this comparison.  The following rules are applied to verify algorithm products: 
 

1) The product is considered for verification if the distance from the ground truth 
observations to the 40 dBZ contour and/or hail classification contour at the 0.5° tilt is 
within the storm’s radius of influence, which varies from 3.2 to 5 km, depending on the 
speed of storm movement.  Since HDA assigns a probability of hail to each storm cell, 
we assess the probability of hail associated with the cell located closest to the ground 
truth.  Probabilities of hail 60% and higher are considered unambiguous “yes” forecasts 
of hail.       

2) Products are compared to ground truth observations within a 12 minute window, centered 
at the time of the volume scan.  This time window is chosen to reflect the maximum 
period between consecutive volume scans. 

3) Given that criteria 1−2 are satisfied, a 2x2 contingency table is created for each day, and 
for all days combined. 

 
The 2x2 contingency tables are used to quantify the accuracy and skill of the HCA and 

HDA, and are constructed by comparing algorithm detections to the ground truth observation.  
Within the contingency table (Table 5), a is a “hit”, b is a “false alarm”, c is a “miss”, and d is a 
“correct null.” In all, eight accuracy measures or conditional probabilities are computed for each 
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day, and for all days combined.  By computing these statistics for each day, we can explore the 
relative sensitivity of algorithm performance to storm type.  The eight conditional probabilities 
are given by: P(Fi=1,2,Oi=1,2) and P(Oi=1,2,Fi=1,2), where P is the conditional probability, F is the 
algorithm detection, O is ground truth, and the subscript i denotes either the presence (i=1) or 
absence (i=2) of hail in the algorithm detection and ground truth.  Traditionally, only two of the 
eight conditional probabilities are examined in radar-based algorithm verification studies, 
including the probability of detection, P(F1,O1), and the false alarm rate, P(O2,F1) (Wilks 1995).  
In this study, all eight probabilities are calculated to construct a more complete understanding of 
forecast accuracy.  The equations for these probabilities are given in Appendix A.  

 

Table 5: Example of a 2x2 contingency table, where a is a "hit", b is a "false alarm", c is a 
"miss", and d is a "correct null." 
 
 Hail Observed Hail Not Observed 

Hail detected by HCA or HDA  a b 

Hail not detected by HCA or HDA c d 

  

For completeness, the Critical Success Index (Wilks 1995),
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= (Wilks 1995).  Both the HSS and the KSS measure the “hit rate that would 

be achieved by random forecasts” (Wilks 1995).  However, these skills scores differ in that the 
KSS requires unbiased random forecasts.  Results arising from these calculations are given in 
Tables 6 and 7, with the most significant findings discussed below.            

 
4.2.3 Analysis results 
 
 For the four days examined in this study, the HCA outperforms the HDA in terms of 
overall accuracy and skill (cf. Tables 6, 7).  This interpretation arises because optimally, 
conditional probabilities of the same classification and observation type will be near 100% (e.g., 
POD), whereas conditional probabilities of different classification and observation type will be 
near zero (e.g., FAR; cf. Tables 6, 7).  And, ideally the HSS, KSS, and CSI will be closer to one 
than zero.  The most striking performance improvement for the HCA (relative to the HDA) is a 
51% increase in HSS and KSS.  These improved scores mean that, compared to the HDA, the 
HCA classifies the presence and absence of hail significantly better than a random or unbiased 
random forecast.  Another set of notable results are a 46% decrease in the probability of false 
detection (POFD or P(Y1,O2)) and a 46% increase in the probability of attaining a correct null, 
given that hail was forecast (P(Y2,O2)).  Concerning more traditional measures, the HCA shows a 
6% increase in POD, a 31% decrease in FAR, and a 30% increase in CSI.  In summary, NSSL’s 
HCA provides superior overall performance compared to the HDA.  Although these statistics 
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show that the HCA attains superior overall performance compared to the HDA, algorithm 
performance varies on individual days.  The relative performance of these algorithms for each 
day is discussed below. 
 

Table 6:  HCA accuracy and skill measures, given as percentages, excluding CSI, HSS, and KSS, 
which range from 0 to 1.  Probabilities are rounded to the nearest integer.  Misses negatively 
impact conditional probabilities with light-gray shading, whereas false alarms negatively impact 
those with dark-gray shading.  
 
Date (2003) Hit Rate CSI P(Y1,O1) P(Y1,O2) P(Y2,O1) P(Y2,O2) 
May 1 100 1 100 0 0 100 
May 14 100 1 100 0 0 100 
May 19−20 96 0.94 94 0 5 100 
June 10−11  73 0.55 83 33 17 67 
Total Score 91 0.86 94 12 6 88 
Date (2003) P(O1,Y1) P(O1,Y2) P(O2,Y1) P(O2,Y2) HSS KSS 
May 1 100 0 0 100 1 1 
May 14 100 0 0 100 1 1 
May 19−20 100 10 0 90 0.91 0.94 
June 10−11  63 14 37 86 0.47 0.50 
Total Score 91 8 8 91 0.82 0.82 
 

Table 7:  HDA accuracy and skill measures, given as percentages, excluding CSI, HSS, and KSS, 
which range from 0 to 1.  Probabilities are rounded to the nearest integer. Misses negatively 
impact conditional probabilities with light-gray shading, whereas false alarms negatively impact 
those with dark-gray shading.  
 
Date (2003) Hit Rate CSI P(Y1,O1) P(Y1,O2) P(Y2,O1) P(Y2,O2) 
May 1 100 1 100 0 0 100 
May 14 75 0.57 57 0 43 100 
May 19−20 72 0.71 96 90 4 10 
June 10−11  53 0.37 100 71 0 29 
Total Score 66 0.56 88 58 12 42 
Date (2003) P(O1,Y1) P(O1,Y2) P(O2,Y1) P(O2,Y2) HSS KSS 
May 1 100 0 0 100 1 1 
May 14 100 38 0 63 0.53 0.57 
May 19−20 74 50 26 50 0.08 0.06 
June 10−11  38 0 63 100 0.19 0.28 
Total Score 61 22 39 78 0.31 0.31 
 
 

Measures of forecast accuracy and skill in Tables 6 and 7 show that the performance of 
the HCA and HDA varies with storm type.  Interestingly, both algorithms attain perfect scores on 
1 May 2003.  On this day, a chase vehicle intercepted an isolated storm as the storm moved 
eastward from approximately 140 km to 130 km west-northwest of KOUN.  During this period 
(~1hr) the storm dropped pea to marble-size hail at the ground.  This result indicates that, given 
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robust signatures within mid-levels of the storm, and constant phase as these ice particles fall to 
the ground, both algorithms can successfully detect relatively small size hail using radar data 
located at distances far from KOUN.   

 
A different situation arises on the morning of 14 May 2003, where the HCA significantly 

outperforms the HDA by attaining perfect scores.  During the morning, a chase vehicle 
intercepted a storm within a west-to-east-oriented convective line 50−55 km west of KOUN.  
Although large hail (up to 5”) was produced by nearby storm, the intercepted storm produced 
small hail only (size was missing from the ground truth observations).  The performance of the 
HDA suffers during this event owing to several misses by the algorithm.  As a result, the POD, 
Hit Rate, CSI, and skill scores are relatively low compared to the HCA.  Although the HDA has 
several misses, it produces no false alarms.  Thus, like the HCA, the HDA achieves perfect scores 
in the four accuracy measures influenced by false alarms.   

 
On 19−20 May 2003, chase vehicles intercept a classic supercell, located about 90 km 

south of KOUN, that drops up to 1.75” hail on the ground.  This supercell produces hail cyclically 
over a several hours, as it moves eastward. Interestingly, the HDA experiences a change in 
performance, compared to 14 May 2003.   In this case, the algorithm endures several false alarms 
and only one miss.  This switch in output yields a high POD (96%), but also a high POFD (90%).  
The large number of false alarms reduces the HDA’s HSS and KSS to near zero.  Thus, in this 
case, the HDA is about as skillful as a random forecast.  Since the HCA has only one miss, it 
outperforms the HDA, mostly in terms of skill (HSS=0.91, KSS=0.94; Table 6).  The superior 
performance of HCA, compared to the HDA, is especially significant in this case, owing to the 
large hail produced by the storm. 

 
The June 10−11 event is distinguished from previous cases in that chase vehicles 

intercept storm cells within a line, rather than individual storm cells.  In this case, the HCA 
suffers more misses than false alarms, whereas the HDA suffers from a few false alarms only.  As 
a result, compared to the HCA, the HDA achieves a higher POD and lower probabilities of 
observing or detecting hail, given that hail is not detected or observed, respectively.  On the other 
hand, compared to the HDA, the HCA achieves lower POFD and FAR, and higher probabilities 
of attaining a correct null detection or observation, given that hail is not observed or detected by 
the HCA.  Thus, neither algorithm is a clear “winner” in this situation, unless one set of accuracy 
measures is more detrimental to operations than the other.  However, if a user is concerned with 
skill, the HCA achieves superior scores.      

 
  In summary, a comparison of accuracy and skill measures for four cases show that the 
HCA outperforms the HDA in terms of overall scores and in most storm situations.  Nonetheless, 
situations where the HCA fails to identify hail, even though it is observed, need to be investigated 
further to advance our understanding of the HCA, and ultimately promote its performance.  These 
positive results, coupled with the HCA’s ability to pinpoint the location of hail within a storm, 
shows that HCA is an advantageous investment for weather-sensitive operations.      
      
4.3 Mesoscale Convective Systems 
 

Over the course of the JPOLE campaign, data were collected for 12 Mesoscale 
Convective Systems (MCSs).  Due to the large size of these systems and the difficulty in 
obtaining in-situ microphysical information that might be used to verify hydrometeor 
classification, a comprehensive examination of the utility of the HCA to identify hydrometeor 
classes in MCSs is beyond the scope of this report.  Nevertheless, we do present a case example 
to demonstrate the ability of the polarimetric radar to identify precipitation regimes within an 
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MCS, identify the location of the radar bright band, and to discriminate between meteorological 
and non-meteorological scatterers. 
 

Fig. 13 shows 0.5° base scan data extending to a range of approximately 300 km from an 
MCS that passed through central Oklahoma on June 16, 2002.  In this figure, we present results 
from application of the “winter” classification algorithm to show the ability of the polarimetric 
hydrometeor classification to identify the location of the radar bright band (analogous to 
identification of the rain/snow transition zone in winter precipitation).  At this time, the MCS was 
beginning to enter its dissipative stage, with the convective line still producing heavy rainfall but 
very little hail.  The region of heavy rainfall, as indicated by both large Zs (upper left corner of 
Fig. 13) and KDPs (not shown), is clearly evident in the HCA output (lower right corner of Fig. 
13) in the SW corner of OK (along the convective line).   

 

 
Figure 13: Four panel image of an MCS that passed through central Oklahoma on June 16, 2002: (upper 
left) reflectivity, (upper right) differential reflectivity (ZDR), (lower left) hydrometeor classification 
algorithm results, and (lower right) cross-correlation coefficient (ρhv).   Image is at 0232 UTC. 
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The location of the bottom of the radar bright band is clearly indicated by the somewhat higher 
ZDRs and dramatic drop in ρhv (to values that were occasionally < 0.9).  Since rainfall in the radar 
bright band is frequently overestimated by conventional R(Z) rainfall estimation techniques, the 
ability to identify the location of the radar bright band has many practical applications. 

 
Schuur et al. (2003b) show the results for the same system, but using the “summer” 

classification algorithm (Section 2.2).  The HCA also indicates an extensive region classified as 
“big drops” along the leading edge of the convective line.  This feature is particularly evident in 
SW Oklahoma, where ZDRs often exceed 4 dB.  Regions of big drops are common features at the 
leading edge of convective cells. Our ground-based observations with a video disdrometer 
indicate that the high Zs associated with these large, but relatively sparse drops can often lead to 
overestimation of rain by as much as a factor of ten if a R(Z) relation is used.  An extensive 
region of light to moderate rain is indicated by the HCA in the MCS trailing stratiform region. 
 
4.4 Winter storms 
 
 The KOUN radar collected polarimetric data for 4 snow storms during JPOLE: on 3 – 4 
December 2002, 6 February 2003, 23 February 2003, and 24 February 2003.  These snow events 
encompass wide variety of different snow types including heavy convective wet snow associated 
with intense electrical activity (24 February 2003), crystallized snow in very cold air pool (6 
February 2003), and more common aggregated dry snow observed on 3 – 4 December 2002 and 
23 February 2003.  Some results of preliminary polarimetric analysis of the snow storms that 
occurred on 3 – 4 December 2002 and 24 February 2003 are reported by Ryzhkov and Zrnic 
(2003), Scharfenberg and Maxwell (2003),  and Miller and Scharfenberg (2003). 
 

 The performance of the classification algorithm is demonstrated on the winter storm of 3 
– 4 December 2002 (Fig. 14).  This storm was associated with the passage of a cold front 
accompanied by the transition from rain to freezing rain and snow in the Oklahoma City 
metropolitan area.  During this event, the melting layer was slowly subsiding with much lower 
height of the bright band in the cold air pool N – NW from the radar.  This feature is manifested 
by the pronounced asymmetry of the “rain” area with respect to the radar location. 

 
  At 12/03/02 1803 UTC (left column of Fig. 14), differential reflectivity gives clear 

indication of the bright band in the northern sector.  More precise determination of the bright 
band location is possible from the ρhv data at the elevation of 1.5°.  About nine hours later, the 
height of the melting layer remained almost the same in the southern sector, but decreased 
noticeably to the north of the radar.  Note the bright band signature in the Z field associated with 
increase of ZDR and drop in ρhv in that direction. 

 
At 12/04/02 0302 UTC (right column of Fig. 15), rain was recognized NW of the radar up to 

distances of 50 – 60 km at the lowest elevation scan.  At the same time, surface temperature fell 
below zero and freezing rain was reported on the ground.  This freezing rain caused significant 
damage in the Oklahoma City metropolitan area. 
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Fig. 14: Composite plots of Z, ZDR, ρhv, and results of classification at El = 0.5º of the 3 – 4 December 
snow event at 12/03/02 (left column) and 12/04/02 0302 UTC (right column).  Surface temperatures (Fº) 
are shown in the classification images.  
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Note that after dropping in the melting layer, the cross-correlation coefficient increases 

again to attain higher values aloft (where snow is dry) that exceed 0.99.  The corresponding lower 
values of ZDR in dry snow are very similar to those observed in rain below the melting level.  This 
again underlines importance of the bright band identification for separation between dry 
aggregated snow and light rain. 
 

More detailed meteorological interpretation of polarimetric variables and their use by the 
forecasters at the Norman NWS office for this winter storm is described by Scharfenberg and 
Maxwell (2003). 
 
4.5 Non-meteorological scatterers 
  
4.5.1 Polarimetric properties of ground clutter, AP, and biological scatterers 
 
 The ability of the polarimetric radar to discriminate between meteorological and non-
meteorological scatterers is demonstrated using version 1 of the classification algorithm.  As 
mentioned in section 2.1, this version allows discrimination between three classes of radar 
scatterers: meteorological, biological, and ground clutter / AP.  Five radar variables are used for 
classification: radar reflectivity Z, differential reflectivity ZDR, cross-correlation coefficient ρhv, 
the texture parameter of the radar reflectivity field SD(Z), and the texture parameter of the 
differential phase field SD(ΦDP).  The corresponding membership functions are represented 
graphically in Fig. 2. These membership functions were obtained after careful analysis of the 
scatterplots of multiparameter data collected for many hours during several days of observations. 
 
 All three classes are heavily overlapped in the Z domain (Fig. 2a).  They are much better 
separated in terms of the other four variables.  Differential reflectivity of non-meteorological 
scatterers varies over wide range.  Very high positive ZDR values unambiguously signify 
biological scatterers (primarily insects), whereas negative ZDRs indicate ground clutter / AP. The 
separation between the three classes based solely on ZDR is problematic if the measured ZDR is 
between 0 and 2 dB (Fig. 2b) 
 

 The use of cross-correlation coefficient yields very good separation of meteorological 
and biological scatterers (Fig. 2c).  The distinction between weather echoes and ground clutter / 
AP is not as clear in the ρhv domain.  This can be explained by the fact that non-fluctuating radar 
signals from man-made objects are characterized by ρhv very close to 1 (similar to meteorological 
scatterers), whereas natural land covers (trees, grass, etc.) have very low ρhv.  The cross-
correlation of the mixture of man-made and natural scatterers depends on their relative 
contribution to the radar return in the particular radar resolution volume.  

 
The texture of radar reflectivity (SD(Z)) that is widely used for AP detection with non-

polarimetric radars (Kessinger et al. 2001, Steiner and Smith 2002) apparently has value to 
distinguish meteorological scatterers and ground clutter / AP, but it is not of a great help to isolate 
the radar echoes from precipitation, insects or birds.  The texture of differential phase SD(ΦDP) is 
more promising than SD(Z) for delineation of precipitation and AP and has less overlap between 
contributions by meteorological and biological scatterers (Fig. 2d,e). 

 
Although none of the five radar variables provides perfect delineation between three 

classes, their combination is very efficient if the fuzzy logic approach is used for classification.  
This complementary character of multiparameter information is illustrated in Fig. 15 where the 
fields of 6 variables are displayed at the lowest elevation tilt of 0.5º for the case of 13 August 
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2002 (when all three sources of radar echo produced significant returns). In addition to the five 
radar variables mentioned, differential phase ΦDP is displayed.  Differential phase promises to be 
a very valuable recognition variable provided that (a) the forward and backward propagation 
components are separated in ΦDP and (b) the differential phase is measured unambiguously 
between 0º and 360º (this will be possible on the RVP8 system).  We therefore plan to add ΦDP to 
the classification scheme in the near future. 

 

 
Fig. 15: Composite plot of Z, ZDR, ρhv, ΦDP, SD(Z), and SD(ΦDP) at El = 0.5º on 13 August 2002, 1024 
UTC. 
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The latter requires some explanation.  An intrinsic differential phase of the radar signal 

due to ground clutter and AP is almost randomly distributed within the interval where the phase is 
measured (0º – 180º in the RVP7 processor).  After radial averaging over 9 successive gates is 
made, the originally random ΦDP tends to bunch around the middle of the phase interval, i.e., 90º.  
Unfortunately, the radar signals backscattered from birds have almost the same differential phase 
(within 70 - 100º).  If differential phase is measured in the 0º - 360º interval, then the predominant 
ΦDP for ground clutter / AP is about 180º and better separation between ground clutter and birds 
would be achieved. 

 
Examples of classification for the cases of 24 August 2002 and 1 May 2003 are presented 

in Fig. 16 and 17.  In the first case, all three types of radar echoes are mixed together and the 
radar reflectivity image gives no clue for identification.  The classification algorithm identifies 
extended regions of AP embedded in precipitation.  Animation of the classification fields shows 
high degree of spatial / temporal “coherency” of these fields and gives us more confidence in the 
performance of the classification scheme.  It is interesting to note a difference between regions 
likely associated with insects (south of the radar) and birds (x = 100, 200 km, y = -150, -30 km) 
in the SE sector of the image.  “Birds” have lower ZDR and higher ΦDP (not shown) than “insects”.  
Also, the “bird” signatures are observed at larger distances and higher altitudes (about 3 km) 
which are quite unlikely for insect-related echoes.  The mean value of ΦDP (due to backscatter 
differential phase) for “insects” is about 40º, which is substantially lower than the one for “birds”. 

 
Fig. 17 illustrates the case with extremely strong AP echo in the SW sector.  This echo 

persisted for about 3 hours and was also observed at the 1.5º elevation angle, although with lesser 
spatial extension.  No rain was recorded by the Oklahoma Mesonet and ARS Micronet gages in 
this area.  Again, the radar reflectivity field gives an impression of strong convective precipitation 
in the SW sector.  Moreover, the presence of AP at higher elevation might confuse traditional AP 
mitigation schemes, which are based on the Z texture and vertical continuity of the radar echo.  
The fuzzy logic classification algorithm unambiguously identifies the source of this echo as AP.  
Less than 1% of radar pixels in this area were wrongly classified as “precipitation” during all 
three hours of observation of this extreme AP event.  At the same time, a thin line of rain in the 
NE sector was correctly identified as precipitation. 

 
As mentioned in section 3, the quality of classification deteriorates with decreasing 

signal-to-noise ratio (SNR).  In all figures, results of classification are displayed for SNR > 5 dB.  
Use of differential reflectivity (not biased by noise) in the classification algorithm (together with 
existing radar variables) might allow us to lower the SNR threshold for reliable classification. 
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Fig. 16: Composite plot of Z, ZDR, ρhv, and results of classification at El = 0.5º on 24 August 2002, 0734 
UTC. 

 
Fig. 17: Composite plot of Z, ZDR, ρhv, and results of classification at El = 0.5º on 1 May  2003, 1107 UTC. 
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4.5.2 Polarimetric properties of chaff 
 
 In this section, we document an observation of chaff that occurred on Feb 6, 2003.  A 
brief theoretical prediction of differential reflectivity, correlation coefficient, and linear 
depolarization ratio is given in Zrnic and Ryzhkov (2003).   Further theoretical analysis is 
ongoing, specifically concerning the backscatter differential phase and a comprehensive paper on 
the subject will be forthcoming. 
 
 Chaff is made of aluminum coated thin fibers and is released by the military to create 
widespread echoes and thus confuse non cooperating tracking radars.  To maximize 
backscattering cross section chaff length is chosen to equal one half the radar wavelength.  As 
predominant wavelengths for military surveillance and tracking are 3, 5, and 10 cm the standard 
chaff lengths are 1.5, 2.5 and 5 cm.  Because chaff is employed by the military as part of routine 
training in the USA, its echoes are often observed on weather radars (Maddox et al. 1997).   
Although the reflectivity is relatively weak it is sufficient to contaminate precipitation estimates 
(Vasiloff and Struthwolf 1997, see the URL at http://www.wrh.noaa.gov/wrhq/97TAs/TA9702/ta97-
02.html).  Examples abound in Western US whereby chaff is imbedded in precipitation (opus 
cited) or coexist next to precipitation echoes (Brandt and Atkin 1998, 
http://www.wrh.noaa.gov/wrhq/98TAs/9804/index.html). Thus it is desirable to recognize returns from 
chaff and censor these from precipitation products.   
 
 It has been argued (Zrnic and Ryzhkov 1999) that polarimetric radar offers a simple and 
effective way to identify chaff. The argument is rooted in common sense logic and experimental 
evidence gained with circularly polarized radars (Brooks et al. 1992).   Polarimetric signatures of 
chaff in linear horizontal and vertical basis have not been reported.  Moreover, because chaff is a 
nuisance (as far as observation of weather is concerned), little or no theoretical results about its 
polarimetric properties are available.  Once the polarimetric upgrade of the WSR-88D is achieved 
it will be possible to have a simple automated procedure for censoring chaff.   
 
 In laminar airflow chaff is mostly horizontally oriented and slowly falls with respect to 
air.  Turbulence and differential air motion will cause wobbling.  In either case differential 
reflectivity ZDR is expected to be relatively large.  Linear depolarization ratio LDR will increase 
compared to the value in precipitation and the cross correlation between copolar returns ρhv will 
decrease.  These polarimetric variables do not depend on the absolute values of returned power 
(i.e., backscattering cross section), yet they are the most significant discriminators.   
 
 Two simple models for computing polarimetric properties of chaff are considered by 
Zrnic and Ryzhkov (2003). In one the chaff is approximated with the Hertzian dipole so that 
standard formulas (i.e., for prolate spheroids with induced field along the axis and no field 
perpendicular) could be applied to compute the elements of the covariance matrix. This 
approximation is applicable for chaff lengths much shorter than the wavelength.  But, for 
polarimetric variables that are independent of concentration and backscattering cross section, we 
show that the model can be extended to half wavelength sizes.    
 
 The second approach (Zrnic and Ryzhkov 2003) is more realistic because it models chaff 
as thin cylindrical antenna (to obtain scattering coefficients). Then, once the scattering 
coefficients are determined, geometrical transformations as done for the spheroids (Bringi and 
Chandrasekhar 2001, Ryzhkov 2001) are applied for computation of the polarimetric variables.   
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 Chaff is assumed to be uniformly distributed in azimuth.  The angle between its axis and 
horizontal plane (flutter angle) is also uniformly distributed but between zero and a maximum 
value.  The two models produce very similar results if the chaff length is half the radar 
wavelength or less.  The linear depolarization ratio is uniquely related to the ρhv and ZDR therefore 
these two variables are sufficient to separate chaff from precipitation echoes.  Values of these 
polarimetric variables as functions of flutter angle are plotted by Zrnic and Ryzhkov (2003). 
 
 On 6 February 2003, a cloud of ice crystals (henceforth, snow band) was observed 
initially over northwest OK, following a snowfall event.  This feature advected southeastward 
toward Oklahoma City (Fig. 19). At the same time, a chaff "cloud" released from an Air Force 
base in eastern New Mexico moved across southern Oklahoma.  
 
 The reflectivity structures of snow band and chaff look very similar but the polarimetric 
variables exhibit significant differences.  Differential reflectivity of chaff ranges from 0 to 6 dB 
whereas for snow it is 0 to 3 dB, hence there is overlap of values.  The fields of correlation 
coefficient uniquely identify chaff and separate fairly well snow from ground clutter except in 
regions where SNR in snow is low (at far distances from the radar).  Total differential phases of 
chaff and snow also differ substantially.  The differential phase in region of snow is close to the 
“system” differential phase (of about 30º) and exhibits very small spatial fluctuations.  In 
contrast, differential phase of chaff is characterized by deep spatial variations. 
 

More detailed analysis of the histogram of ΦDP, prior to radial averaging, in chaff reveals 
broad maximum at about 80º. This mean value of ΦDP might be indicative of a “receiver 
component” of the “system” differential phase. Indeed, physical considerations show that chaff 
produces zero backscatter differential phase.  That is, regardless of the transmitted differential 
phase between the H and V components each needle reflects a field aligned along its axis.  Thus, 
upon reflection the H and V fields are in phase.  Once these fields are transformed into voltages 
and subsequently passed through the receiver they acquire the differential phase of the receiver.  
This reasoning is valid if the H and V fields are transmitted simultaneously, as done in the current 
implementation on the KOUN radar.  In case of sequential transmission (of H and V components) 
the backscatter differential phase of chaff is equal to the sum of the transmitted differential phase 
and differential phase of the receiver (i.e., total differential phase of the radar system).  
 

 We speculate that very broad distribution of the measured differential phase in 
chaff is primarily due to high measurement errors attributed to very low cross-correlation 
coefficient (between 0.2 and 0.5).  

 
Similar analysis of differential phase in ground clutter reveals almost uniform distribution 

of raw ΦDP within the interval between 0º and 180º. The ρhv values from ground clutter are 
significantly higher than the corresponding values from chaff (Fig. 2b), thus one expects smaller 
measurement errors of ΦDP in ground clutter. The observed uniform distribution of differential 
phase from ground clutter indicates that its intrinsic ΦDP (i.e., backscatter differential phase void 
of any measurement errors) might be uniformly distributed as opposed to chaff for which intrinsic 
differential phase upon scattering is likely zero. 
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Fig. 18: Fields of polarimetric variables from regions of ground clutter, chaff, and snow.   Data were 
obtained during the JPOLE experiment on Feb 6, 2003.  Data is at 2001 UTC and an elevation of 0.5° 
 
 Scatterplots of differential reflectivity and correlation coefficient vs. reflectivity factor at 
SNR > 10 dB and from the region of chaff are displayed in Figs. 20 and 21.  These data are from 
six scans at 0.5o elevation between the times 20 and 21 UTC. The average value of ZDR is 3.36 dB 
and of ρhv it is about 0.34.  The model with these values (Fig. 1 and Fig. 2 in Zrnic and Ryzhkov 
2003) suggests that the flutter angle is 62o (implied from ZDR) and 78o (implied from ρhv).  The 
agreement is reasonable considering that receiver noise was not accounted for and that the model 
of uniform flutter angle distribution is a crude approximation of the true (but unknown) 
distribution.  Still both polarimetric variables indicate that the needles have a large effective 
variation of flutter angles.   
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Fig. 19:  Scatterplot of the correlation coefficient vs. reflectivity factor from chaff.  Data were collected on 
Feb 6, 2003. 

 
Fig. 20: Scatterplot of differential reflectivity vs. radar reflectivity factor from chaff. 

 

1/3 
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5. Summary 
 

Highly successful data collection during the Joint Polarization Experiment (JPOLE) has 
provided a large data set that is used to demonstrate the ability of a polarimetric WSR-88D radar 
to: (1) improve data quality, and (2) improve hydrometeor identification capabilities.  Companion 
reports present an analysis of the calibration and performance of the polarimetric NSSL WSR-
88D (Melnikov et al. 2003), an overview of the JPOLE data collection and operational delivery 
(Schuur et al. 2003a), and an analysis of the ability of a polarimetric WSR-88D to improve 
rainfall estimation (Ryzhkov et al. 2003). 
 

Three separate fuzzy-logic-based classification algorithms are described and used to 
conduct the analyses presented in this report.  The first algorithm is designed to discriminate 
between meteorological and non-meteorological scatterers.  The second, referred to as the 
“summer” classification algorithm, identifies hydrometeor types in warm-season precipitation 
systems.  The third, referred to as the “winter” classification algorithm, includes ice categories; it 
is primarily used to discriminate precipitation type in cold-season precipitation systems (also used 
to identify the location of the radar bright band in summer precipitation systems). 

 
Three different methods of using polarimetric radar to improve data quality are presented.  

These include: (1) polarimetric discrimination techniques to filter out non-meteorological echoes, 
(2) application of ΦDP to increase the accuracy of radar reflectivity measurements or self 
consistency checks among Z, ZDR, and KDP, and (3) information extraction about biological 
scatterers to better retrieve Doppler winds in clear air.  Conclusions drawn from the application of 
these methods are summarized below: 

 
• Filtering out non-meteorological echoes: Using version 1 of the algorithm, we show that 

non-meteorological scatterers can be correctly identified and removed from 
meteorological echoes.  The analysis indicates that, if the SNR is > 10 dB, the number of 
pixels classified as non-meteorological (meteorological) in pure rain (AP/ground clutter) 
areas is generally < 1%.  Misclassification rates deteriorate to approximately 5% if a SNR 
threshold of > 5 dB is used.   

 
• Improving the accuracy of reflectivity measurements: We show that polarimetric data can 

be used to improve radar reflectivity measurements.  With the first technique, differential 
phase is used to directly correct Z for a case of extreme attenuation along a squall line.  
With the second technique, a self consistency check that utilizes Z, ZDR, and KDP is used 
to demonstrate that it is possible to correct Z to within 1.0 to 1.5 dB for cases of poor 
calibration and/or partial beam blockage (Ryzhkov et al. 2003).   

 
• Improving Doppler wind measurements in clear air: Most clear echoes are caused by 

biological scatterers such as birds and insects.  Polarimetric radar can discriminate 
between the two and thus identify contaminated Doppler wind estimates. 

 
Examples of classification techniques to identify regions of AP/ground clutter, biological 

scatterers, and chaff are also presented in this report. 
 

The analyses also demonstrate the ability of polarimetric classification techniques to 
improve hydrometeor discrimination (as well as identify the location of non-meteorological 
scatterers that are embedded within meteorological echoes).  Examples are provided for 4 
different types of precipitation systems.  These include the ability to: (1) detect tornadic debris, 
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(2) identify the location of hail, (3) identify hydrometeor types (and the location of the radar 
bright band) in an MCS, and (4) identify hydrometeor types (and the location of the rain/snow 
line) for a winter storm.  These applications are summarized below: 

 
• Detect tornado debris: An investigation of two significant tornado events that occurred 

close to the KOUN radar during JPOLE provide confirmation of repeatable polarimetric 
signatures associate with tornadic debris.  Several conclusions can be drawn from this 
work.  For example, polarimetric data can confirm tornado warnings, confirm tornado 
damage, and pinpoint current tornado location.  Additional data collection and research is 
required to determine whether polarimetric radar data can be used to detect tornadic 
debris at distant ranges or to identify polarimetric signatures that might be associated 
with possible microphysical precursors to tornadogenesis. 

 
• Identify the location of hail: The presented data to demonstrate the ability of polarimetric 

radar to improve hail detection.  Previous radar-based hail algorithms only provide 
estimates of hail (or severe hail) probability for any given storm.  On the other hand, the 
polarimetric classification algorithm pinpoints hail location within the storm.  A 
statistical analysis presented in this report demonstrates the advantages provided by the 
polarimetric classification algorithm.  The analysis results indicate that the polarimetric 
Hydrometeor Classification Algorithm (HCA) outperforms the operational Hail Detection 
Algorithm (HDA) in terms of both overall accuracy and skill (Section 4.2.3).  Whereas 
the statistics show that the HCA attains superior overall performance compared to the 
HDA, the algorithm performance varies on individual days.  Additional research is 
required to enhance algorithm performance, identify microphysical signatures that might 
be associated with hail embryo regions, and to determine hail size. 

 
• Identify hydrometeor type in an MCS: Application of the hydrometeor classification 

algorithm to a MCS demonstrates the ability of the polarimetric hydrometeor 
classification algorithm to identify hydrometeor types in a large, warm-season 
precipitation system.  The algorithm also shows great utility for locating the bright band, 
which is a region where rainfall is often greatly overestimated by conventional R(Z) 
relations. Additional research is required to gather information that might boost algorithm 
performance, as well as provide data that could justify inclusion of additional ice 
categories in the classification scheme. 

 
• Identify hydrometeor type in a winter storm: Application of the hydrometeor 

classification algorithm to a winter storm demonstrates the ability of the polarimetric 
hydrometeor classification algorithm to identify hydrometeor types in a large, cold-
season precipitation system.  The algorithm also shows great utility at determining the 
location of the rain/snow transition line.   

 
During JPOLE, several polarimetric KOUN WSR-88D radar measurements and 

hydrometeor classification products were delivered to operational forecasters at the Norman, OK 
NWS forecast office.  Application of these data and products in the warning decision process is 
discussed by Schuur et al. (2003a).   
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Appendix A 
 
 

We begin with a brief review of the 2x2 contingency table, where a is a “hit”, b is a 
“false alarm”, c is a “miss”, and d is a “correct null” (Table 5).  Eight conditional probabilities are 
available from the classic 2x2 contingency table, defined by P(Fi=1,2,Oi=1,2) and P(Oi=1,2,Fi=1,2), 
where P is the conditional probability, F is the algorithm detection, O is ground truth, and the 
subscript i denotes either the presence (i=1) or absence (i=2) of a given phenomena (here hail) in 
the algorithm detection and ground truth.  The equations denoting these probabilities and a brief 
description of each are given below.  These descriptions apply to the hail verification within this 
report. 
 
The first set of conditional probabilities relate the probability of attaining a “yes” or “no” 
detection, given the observation: 

1. 
ca

aOYP
+

=),( 11 is the probability of attaining a hit, given that hail was observed.    

This conditional probability is known as the probability of detection (POD). 
 

2. 
db

bOYP
+

=),( 21 is the probability of attaining a false alarm, given that hail was not 

observed.   This measure is known as the probability of false detection (POFD). 
 

3. 
ca

cOYP
+

=),( 12 is the probability of attaining a miss, given that hail is observed. 

 

4. 
db

dOYP
+

=),( 22 is the probability of attaining a correct null, given that hail was not 

observed. 
 
This second set of conditional probabilities relate the probability of observing hail or a lack 
thereof, given the detection: 
 

1. 
ba

aYOP
+

=),( 11 is the probability of hail being observed, given that the algorithm 

detected hail. 
 

2. 
dc

cYOP
+

=),( 21 is the probability of hail being observed, given that the algorithm did 

not detect hail.   
 

3. 
ba

bYOP
+

=),( 12 is the probability of no hail being observed, given that the algorithm 

detected hail.  This measure is known as the false alarm rate (FAR). 
 

4. 
db

dYOP
+

=),( 22 is the probability of no hail being observed, given that the algorithm 

did not detect hail.  


