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ABSTRACT

Disdrometer observations indicate that the raindrop size distribution (DSD) can be represented by a
constrained-gamma (CG) distribution model. The model is used to retrieve DSDs from polarization radar
measurements of reflectivity and differential reflectivity and to characterize rain microphysics and physical
processes such as evaporation, accretion, and precipitation. The CG model parameterization is simplified to
a single parameter for application in single-moment numerical models. This simplified parameterization is
applied in the Variational Doppler Radar Analysis System (VDRAS) using Kessler-type parameterizations
for model initialization and forecasting. Results are compared to those for the Marshall–Palmer (MP) DSD
model. It is found that the simplified CG model parameterization better preserves the stratiform rain and
produces better forecasts than the MP model parameterization.

1. Introduction

Understanding and characterization of precipitation
microphysics is needed for improving parameterization
in numerical weather prediction (NWP) models
(Droegemeier et al. 2000; Sun 2005; Zhao and Carr
1997). Early, microphysical parameterizations were
mostly single-moment (bulk water) schemes (Kessler
1969). Recently, two-moment parameterization
schemes and spectral models have received attention
(e.g., Ferrier 1994; Meyers et al. 1997; Hong et al. 2004;
Chen and Liu 2004). In addition to rainwater mixing
ratio, two-moment models typically forecast total drop
concentration and diagnose the mean particle diameter.
Spectral models start with a stochastic collection equa-
tion and solve for the temporal and spatial changes in
the drop spectra. While two-moment parameterizations
provide additional freedom in describing microphysics
and spectral models are more rigorous, single-moment

parameterization is still widely used (Walko et al. 1995;
Thompson et al. 2004), for example, in the fifth-
generation Pennsylvania State–National Center for At-
mospheric Research (PSU–NCAR) Mesoscale Model
(MM5) and Weather Research and Forecast (WRF)
models, because of its simplicity and computational ef-
ficiency.

The fundamental characterization of rain microphys-
ics is through the raindrop size distribution (DSD). Mi-
crophysical processes of evaporation, accretion, and
precipitation rate are all related by the DSD. The pa-
rameterization scheme of Kessler (1969) was developed
on the assumption of an exponential distribution of
raindrops, written as

N�D� � N0 exp���D�, �1�

where the slope parameter � relates to a characteristic
size of the raindrops such as the mean diameter [�D� �
(2/�)] or median volume diameter [D0 � (3.67/�)].
Here, N0 is an intercept parameter, which was fixed
at 10 000 m�3 mm�1 by Kessler. When N0 � 8000
m�3 mm�1, Eq. (1) becomes the Marshall–Palmer (MP)
drop size distribution (Marshall and Palmer 1948). For
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the MP DSD model and Kessler’s parameterization
scheme, microphysical processes for evaporation rate
(Re in g m�3 s�1) for a unit water vapor saturation
deficit, accretion rate (Rc in g m�3 s�1) for a unit cloud
water content, and mass-weighted terminal velocity
(Vtm in m s�1) can be represented in terms of rainwater
content (W in g m�3) as follows:

Re � 5.03 	 10�4W13�20 �2�

Rc � 5.08 	 10�3W7�8 �3�

Vtm � 5.32W1�8. �4�

The radar reflectivity factor at horizontal polarization
(ZH in mm6 m�3) is related to water content by

ZH � 2.04 	 104W7�4. �5�

Although there have been some modifications, for ex-
ample, by Miller and Pearce (1974), Clark (1977),
Klemp and Wilhelmson (1978), Lin et al. (1983), and
Rutledge and Hobbs (1983), this simple approach to
model parameterization, called a Kessler-type scheme,
is still widely used in mesoscale models. As noted by
Kessler (1969, p. 30), an exponential DSD model with a
fixed intercept “does some violence to the physics of
the evaporation process”. The problem with fixed-
intercept parameterizations is that the rainwater gets
redistributed into smaller drop categories as the drop
spectra slope parameter increases, thus accelerating the
process of rainwater removal through evaporation.
Rainfall rate cannot be accurately estimated with an
R–Z relation derived from the MP DSD model (Wilson
and Brandes 1979, their Table 3). The uncertainty of
rain-rate estimation can be as high as 50% (Smith et al.
1975, 1993; Hagen and Yuter 2003). The coefficients
and exponents in (2)–(5) are often arbitrarily adjusted
to improve forecast results (Miller and Pearce 1974;
Sun and Crook 1997). However, such adjustments are
mostly empirical (Liu and Daum 2004) and lack verifi-
cation with observations. Another problem with the
Kessler-type scheme occurs when an adjoint model is
derived in a four-dimensional data assimilation
(4DVAR) system. Because of the highly nonlinear na-
ture of expressions such as Eqs. (2) and (4), the mini-
mization of the cost function tends to have convergence
problems (Sun and Crook 1997).

The gamma distribution has been used to improve
the characterization of rain DSDs over the exponential
distribution (Ulbrich 1983; Willis 1984). Recent dis-
drometer observations indicate that rain DSDs can be
represented by a constrained-gamma (CG) distribution
model (Zhang et al. 2001). The CG model was devel-

oped for retrieving rain DSDs from polarization radar
observations. The procedure is to determine the three
parameters of the gamma distribution from radar re-
flectivity, differential reflectivity, and a constraining re-
lation between the shape and slope of the distribution.
It has been shown that the CG model characterizes
natural DSDs better and leads to more accurate retriev-
als than that with a two-parameter exponential model
and with a variable N0 (Brandes et al. 2003). The CG
rain DSD model allows accurate rainfall estimation and
study of storm microphysics through the retrieval of
total number concentration, droplet size, and the shape
of rain spectra (Brandes et al. 2004a, 2006; Vivekanan-
dan et al. 2004).

In this paper, we apply the constrained-gamma DSD
model to the microphysical parameterization in a cloud
model and evaluate the impact of the parameterization
scheme on the initialization and forecasting of storms.
Our ultimate goal is to develop a two-moment scheme
that utilizes two polarization radar measurements of ZH

and ZDR for model parameterization and initialization.
At this moment, however, a two-moment data assimi-
lation system is not available. In addition, the case we
studied in this paper does not have volumetric polar-
ization. Therefore, the objective of this manuscript is to
(i) show the potential of using polarization radar data
for improving model parameterization with the CG
model, (ii) simplify it to a single parameter simplified
CG model, and (iii) test the simplified CG model in
VDRAS for model parameterization and initialization
to see the improvements. Section 2 describes the mi-
crophysical parameterization based on constrained-
gamma DSDs and compares it with the MP distribution
model. Section 3 simplifies the CG model parameter-
ization to a single parameter for application in bulk
models. Experiments in variational data assimilation
and numerical weather prediction are presented in sec-
tion 4. A summary and discussion are provided in sec-
tion 5.

2. Constrained-gamma DSD model and rain
microphysical processes

The constrained-gamma DSD model consists of a
gamma distribution in the form (Ulbrich 1983)

N�D� � N0D� exp���D� �6�

[where N0 (mm�(1�
) m�3) is a concentration param-
eter, 
 is a shape parameter, and � (mm�1) is a slope
parameter] and a constraining relation between 
 and
� given by
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� � 0.0365�2 � 0.735� � 1.935. �7�

Relation (7) was derived from 2D video-disdrometer
measurements made in Florida (Zhang et al. 2001) and
has been verified by data collected in Oklahoma
(Brandes et al. 2003). It has been shown that (7) char-
acterizes natural rain DSD variations quite well and is
not purely the result of measurement error (Zhang et
al. 2003). It has recently been verified by numerical
simulations with a simple rain shaft model (Seifert
2005). The relation applies to both convective and
stratiform DSDs except for that at leading edges of
convective storms and drizzle rains. Fine tuning for
geographical locations/climatology with further obser-
vations may improve the model results. Special atten-
tion and treatment is required for small drops when 
 is
negative. The negative 
s can cause infinite total num-
ber concentration and unrealistically large evaporation.
Hence, 
 is forced to 
 � �1 for 
 � �1 and the
integration is performed in a finite limit [Dmin, Dmax]
rather than [0, ].

The constrained-gamma DSD model represented
by (6) and (7) is essentially a two-parameter model
much like the exponential distribution or a gamma
distribution with a fixed 
. The difference, however,
is that the constrained-gamma DSD model is capable
of describing a variety of drop-size distributions with
different spectral shapes: concave upward shape for
a broad distribution versus convex for a narrow dis-
tribution on a semilogarithm plot. Because 
 and
� jointly describe the DSD shape, the characteristic
size (e.g., median volume diameter D0) and the spec-
trum width are related (Brandes et al. 2004b). This
makes physical sense because, except at the leading
edge of some convective storms, large raindrops are
usually accompanied by small drops, which leads to a
broad spectrum. On the other hand, small and medium
size raindrops are not necessarily accompanied by large
drops, for example, stratiform and light convective rain
DSDs. A 
 � � (or 
 � D0) relation allows better
characterization of the raindrop size/spectrum width
dependence than a fixed distribution shape without in-
creasing the number of parameters. A fixed 
 is a spe-
cial 
–� relation, for example, an exponential distribu-
tion (
 � 0).

The 
–� relation facilitates the reliable retrieval of
the gamma DSD parameters (N0, 
, and �) from po-
larization radar measurements of radar reflectivity fac-
tor (ZH) and differential reflectivity (ZDR). Rain physi-
cal parameters can then be obtained by integration of
the DSD with proper weight. For example, rainwater
content (W in g m�3) is

W �
�w 	 10�3�

6
N0�

Dmin

Dmax

D��3 exp���D� dD

�
�w 	 10�3�

6
N0�����4�����Dmax, � � 4�

� ���Dmin,� � 4��, �8�

where � is the incomplete gamma function, Dmin and
Dmax are raindrop minimal and maximal diameters.
Here, Dmin was set to 0.1 mm; Dmax, the size of the
largest drop, can be estimated from radar reflectivity or
differential reflectivity (Brandes et al. 2003). For com-
putational convenience, expressions for rainwater con-
tent, rainfall rate (R in mm h�1), total number concen-
tration (NT in m�3), D0 (in mm), and the parameter 

can be expressed in terms of ZH and ZDR as (Brandes
et al. 2004b)

W � 5.589 	 10�4ZH 	 10�0.223ZDR
2

�1.124ZDR� �9�

R � 0.00760ZH 	 10�0.165ZDR
2

�0.897ZDR� �10�

NT � 2.085ZH 	 10�0.728ZDR
2

�2.066ZDR� �11�

D0 � 0.171ZDR
3 � 0.725DR

2 � 1.479ZDR � 0.717 �12�

� � 6.084D0
2 � 29.85D0 � 34.64, �13�

where ZH is in linear units (mm6 m�3) and ZDR is in dB.
Relations (9)–(13) have been verified for tropical rain
in Florida (Brandes et al. 2003, 2004a,b). The uncer-
tainty for rainwater content estimates is within 10%,
similar to that for rainfall rate. The total number con-
centration estimates are normally within an order of the
measurements. The standard error for median volume
diameter is less than 0.2 mm. These numbers are for the
Florida data and further verifications are needed in
other climatological regions. The equations allow de-
tailed study of precipitation microphysics for convec-
tive and stratiform precipitation and their evolution
(Brandes et al. 2004a). For example, at the same rainfall
rate, stratiform rain often has a larger median volume
diameter than that for convective rain. Figure 1 shows
an example of rain physics retrievals from radar mea-
surements using the CG and MP models. Direct calcu-
lations with disdrometer measurements are also pre-
sented for reference. The comparison reveals that the
MP model (i) overestimates NT except for heavy con-
vective rains and has a small dynamic range, (ii) under-
estimates W for convective rainfall (1440–1490 UTC),
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(iii) overestimates W for stratiform rain (after 1520
UTC), and (iv) underestimates D0 for stratiform rain.
Clearly, the polarization radar–based CG model char-
acterizes rain microphysics more accurately than the
reflectivity-based MP model.

Once the rain DSD is known, rain microphysical
processes can be estimated. The constrained-gamma
DSD model with two independent parameters can be
used to derive rain microphysical process parame-
ters: evaporation rate (Re), accretion rate (Rc), and
mass-weighted terminal velocity (Vtm). Following
Kessler’s parameterization procedure, the microphysi-
cal process parameters are derived (see appendix) by
integration of the gamma DSD (6). Assuming an
evaporation coefficient Ee � 1 and accretion coefficient
Ec � 1, we obtain Re for a unit vapor saturation deficit
(me � 1 g m�3) from (A3), Rc for a unit cloud water
content (mc � 1 g m�3) from (A6), and Vtm from (A7),
as given by

Re � 6.78 	 10�4W�7�5

	
����Dmax,� � 13�5� � ���Dmin,� � 13�5��

����Dmax,� � 4� � ���Dmin,� � 4��

�14�

Rc �
3 	 10�3W

2 �
i�0

4

cl�
�l�1

	
����Dmax, � � l � 3� � ���Dmin, � � l � 3��

����Dmax, � � 4� � ���Dmin, � � 4��

�15�

Vtm � �
l�0

4

cl�
�l

	
����Dmax, � � l � 4� � ���Dmin, � � l � 4��

����Dmax, � � 4� � ���Dmin, � � 4��
,

�16�

where cl are coefficients representing the drop terminal
velocity relation of Brandes et al. (2002). Figure 2 com-
pares retrieved microphysical process parameters using
the CG DSD model with that from the MP DSD model
(another example is presented in Brandes et al. 2006).
Calculations with the disdrometer observations are
shown for reference. If the disdrometer results can be
considered as “truth,” the MP model overestimates
evaporation and accretion for stratiform rain by up to a
factor of 10 and underestimates them for strong con-
vection. This might be the reason that the parameter-
ization coefficients in (2)–(3) are usually reduced by

FIG. 1. Time series comparison of estimated total number con-
centration (Nt), rainwater content (W ), and median volume di-
ameter (D0). Results are shown for disdrometer observations and
radar estimates using the CG, SCG, and MP DSD models. Data
were collected on 21 Aug 1998 in Florida.

FIG. 2. As in Fig. 1 except for estimated evaporation rate (Re)
for a unit vapor saturation deficit, accretion rate (Rc) for a unit
cloud water content, and mass-weighted terminal velocity (Vtm).
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one-half (or more) in an attempt to improve weather
model forecasts (Miller and Pearce 1974; Sun and
Crook 1997). The MP model also underestimates the
mass-weighted terminal velocity for stratiform rain be-
cause the droplet size is underestimated. The MP
model yields a smaller dynamic range for all micro-
physical process parameters, which could be a reason
(in addition to grid resolution) that cloud models have
difficulty resolving finescale storm features (Seifert and
Beheng 2001). It is apparent that the CG DSD model
gives more accurate estimation of rain microphysical
processes than the MP model. It is because of the use of
reflectivity and differential reflectivity (i.e., two param-
eters) in the retrieval process that the CG rain model
more closely represents the disdrometer-derived (natu-
ral) raindrop spectra than the single parameter MP
model. Therefore, the CG parameterization scheme
[(14)–(16)] can be used to improve two-moment models
that forecast two microphysical parameters (e.g., W and
D0). For convenience, the CG parameterization can be
expressed in terms of W and D0 as

Re � W��0.1494D0
3 � 1.109D0

2 � 2.767D0 � 2.597�

	 10�3 �17�

Rc � W�0.0161D0
3 � 0.0139D0

2 � 1.097D0 � 6.982�

	 10�3 �18�

Vtm � 0.100D0
3 � 1.133D0

2 � 5.145D0 � 0.104. �19�

Equations (17)–(19) are alternative forms of (14)–(16),
obtained by fitting Re /W, Rc /W, and Vtm to polynomial
functions of D0. The fitting results are shown in Fig. 3.
The discrete points are calculations from integrations of
disdrometer measurements (Zhang et al. 2001; Brandes
et al. 2003). There is very little deviation from the fitted
curves, suggesting that the two-parameter model accu-
rately represents rain microphysics. Mean relative er-
rors for Re, Rc, and Vtm estimates with (17)–(19) are less
than 6%. (The same approach was applied to polariza-
tion radar retrievals and similar results were obtained.)
The ratios Re /W and Rc /W decrease as D0 increases
except for Re /W at large D0. This is because the total
surface area and cross section associated with evapora-
tion and accretion are smaller for DSDs dominated by
large raindrops than for small drops at the same W. The
flattening of Re /W at large D0 is due to the fact that
large D0s usually occur in storm centers where DSDs
typically have a broad distribution with large numbers
of small drops. It is obvious that microphysical process
parameters computed from the CG DSD depend on
both rainwater content and droplet size, which makes
physical sense.

3. Simplified constrained-gamma model
parameterization

Bulk model parameterization in most numerical
simulations using the MP DSD model is typically based
on only one parameter, liquid water content, or water
mixing ratio. To apply the CG model parameterization,
(14)–(16) or (17)–(19), in a numerical model that does
not forecast D0, we need to reduce the two-parameter
model to a single parameter. As we have seen, the CG
DSD model and retrievals are represented by two radar
measurements, that is, reflectivity and differential re-
flectivity. It is noted that for rain these measurements
are statistically related. The dataset in Fig. 4 was cre-
ated from calculations of electromagnetic wave scatter-
ing for disdrometer measurements collected in east-
central Florida during the summer of 1998 field pro-
gram (PRECIP98) when NCAR’s S-band dual-
polarization Doppler radar (S-Pol) was deployed
(Brandes et al. 2002). A mean relation is derived from
the data as follows:

ZDR � 10��2.362 	 10�4ZH
2

� 0.04581ZH � 1.4333�, �20�

where ZH is in dBZ and ZDR is in dB. The ZDR–ZH

scatterplot, for Florida convective storms, provides in-
formation about rain type and microphysics. As indi-
cated in the figure, the data points for moderate and
small reflectivity above the mean curve are usually as-
sociated with stratiform rain formed from convective

FIG. 3. Dependence of rain microphysical process parame-
ters (Re, Rc, and Vtm) on median volume diameter (D0) for CG
DSDs. The discrete points are estimates from disdrometer mea-
surements; Re and Rc are in g m�3 s�1, W in g m�3, and Vtm in
m s�1.
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debris or with the leading edge of convection where
drops are typically large (large ZDR). The points with
large reflectivity and distributed along the mean curve
are characteristic of convective storm cores. Those
close to the lower boundary of the data domain are
representative of rainy convective downdraft with lots
of small drops. Stratiform rain in Florida tends to have
small number concentrations and relatively large D0

compared with light convective rain with the same rain-
fall rate. These properties are similar to those found by
Bringi et al. (2003) and Steiner et al. (2004). Normally,
both ZH and ZDR are needed to accurately characterize
rain microphysics and physical process. Note, however,
with (20) much of the information in the ZDR measure-
ment is lost; and, consequently, it should be used only in
one-moment models.

Substitution of (20) into (9) enables rainwater con-
tent estimation from radar reflectivity alone and con-
stitutes a simplified CG (SCG) DSD model. Retrievals
of rain microphysical parameters based on the SCG
DSD model are shown in Figs. 1 and 2 and are im-
proved over those from the MP DSD model. Rainwater
estimates from radar reflectivity using the SCG model
and the MP model (5) are compared in Fig. 5. Calcu-
lations with disdrometer data are also shown for
reference. It is seen that the two estimated water con-
tents agree for the medial radar reflectivity values at
which most rain falls, but the SCG DSD model allows

a larger dynamic range of water content and gives a
smaller water content for weak radar reflectivity (stra-
tiform rain) than the MP model. The SCG model
results agree with disdrometer observations better
than the MP model. This is consistent with the results
shown in Figs. 1 and 2, which is a subset of data shown
in Fig. 5.

FIG. 5. Comparison of rainwater content estimates using the
SCG and MP DSD models.

FIG. 4. The statistical relation between radar reflectivity and differential reflectivity for rain. The dataset is
obtained from the disdrometer observations collected in east-central Florida during the PRECIP98 project.
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Microphysics process parameters for evaporation, ac-
cretion, and mass-weighted terminal velocity are calcu-
lated for the SCG DSD model parameterization. The
procedure is to (i) estimate ZDR from ZH using (20); (ii)
calculate W, D0, 
, and � using (9), (12), (13), and (7),
respectively; and (iii) substitute W, 
, and � into (14)–
(16) to calculate Re, Rc, and Vtm. The microphysics pro-
cess parameters are plotted as a function of rainwater
content in Fig. 6. Results for MP DSD model param-
eterization and that from the direct calculation with the
disdrometer data are shown for comparison. It is noted
that the SCG DSD model yields smaller evaporation
and accretion rates than the MP DSD model for light
(stratiform) rain, which agrees with the disdrometer re-
sults better. However, the scatter in Fig. 6 is so much
larger than that in Fig. 3, indicating that a single pa-
rameter cannot accurately characterize rain micro-
physical processes. Derivatives of the physical process

parameters with respect to the rainwater content are
also calculated and shown in Fig. 7 with a logarithmic
scale. It is interesting to note that the derivative of
evaporation rate approaches a constant for the SCG
model rather than a monotonic increase for the MP
model when the rainwater content approaches zero.
The large derivative resulting from the nonlinearity of
the evaporation rate and the terminal velocity for the
MP model causes a significant convergence problem in
data assimilation, requiring special treatment and ap-
proximations to be made in the variational analysis of
radar data (Sun and Crook 1997). For example, a con-
stant derivative was forced for rainwater mixing ratios
below a specified value. Therefore, the reduced nonlin-
earity at low water contents in the SCG model param-
eterization is another advantage over the MP param-
eterization for data assimilation applications.

For convenience, the microphysical process param-
eters (14)–(16) constrained by (20) were also fitted to
exponent polynomial functions, giving

Re � 10�0.00679�logW�4�0.0557�logW�3�0.119�logW�2�0.937 logW�3.369� �21�

Rc � 10��0.0000603�logW�4�0.00255�logW�3�0.0212�logW�2�0.933 logW�2.294� �22�

Vtm � �4.509 	 10�4�logW�4 � 0.0148�logW�3 � 0.263�logW�2 � 1.410 logW � 5.799. �23�

Performances of these formulas [(20)–(23)] are quan-
tified by calculating relative bias and errors of their
estimates as shown in Table 1. The results with the MP

model [(2)–(5)] are also shown for comparison. The
water content (W) is estimated from radar reflectivity,
and Re, Rc, and Vtm are estimated from W. The relative

FIG. 6. Comparison of rain physical process parameters be-
tween SCG DSD and MP DSD model; Re and Rc are in g m�3 s�1,
and Vtm is in m s�1.

FIG. 7. Derivatives of physical process parameters: evaporation
rate (dRe /dW), accretion rate (dRc /dW), and mass-weighted ter-
minal velocity (dVtm/dW) for the SCG and MP DSD models.
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bias and error are calculated in both linear and loga-
rithm domains because the error analysis in linear do-
main is highly weighted by heavy rain and that in loga-
rithm domain accounts for more contribution from light
rain data points. The relative bias and error for water
content estimates with the SCG model in the linear
domain are comparable to those with the MP model at
about 13% bias and 50% error. However, estimations
of microphysical processes: Re, Rc, and Vtm with the
SCG model are generally improved, especially in the
logarithm domain (numbers superscripted with aster-
isks). For example, the error of the SCG Re estimates is
18.6% in linear domain and 3.2%* in logarithm domain
while that of the MP estimates is 40.1% and 8.2%*,
respectively. The relative bias is also reduced substan-
tially. It is noted that this error analysis is preliminary
and further verification is required in the future. The
parameterization scheme of (21)–(23) can be applied to
any numerical weather model with microphysics char-
acterized by a single parameter; that is, by bulk water
content or rainwater mixing ratio.

Figure 8 shows the spatial distributions of the rain
microphysical process parameters estimated from
NCAR’s S-pol radar measurements using the CG,
SCG, and MP models. The polarization radar is located
at (�9 km, �25 km) from the origin. The radar mea-
surements of reflectivity and differential reflectivity
were collected at 0.5 degree of elevation. In general, the
CG model gives a larger dynamic range, and more de-
tailed features, and larger spatial variations for Re and
Rc than the MP model. Results for the SCG model are
between that for the CG and MP models. The MP
model overestimates evaporation by about three times
for the stratiform rain in the upper-right corner of the
images. The SCG model gives stratiform rain evapora-
tion close to that of the CG model.

4. Impact of the SCG parameterization on
forecasting of storm evolution

The parameterization scheme (21)–(23) with the
autoconversion term kept the same was implemented

in the warm cloud model developed by Sun and Crook
(1997). A case of Florida multicell storms observed
during PRECIP98 was used to test whether the new
parameterization scheme improves the forecasting
of storms over the MP parameterization scheme
(2)–(4). This cloud model is chosen for our study
because it has a 4DVAR radar data assimilation
system for model initialization. The system is referred
to as VDRAS. It has the ability to retrieve the dyna-
mical and microphysical variables needed for initial-
ization and has reasonable skill for very short-
term forecasting of storm evolution (Sun and
Crook 1998; Wu et al. 2000; Warner et al. 2000; Sun
2005).

The numerical model in VDRAS is anelastic with
Kessler-type warm rain microphysical parameter-
ization. There are six prognostic equations: one for
each of the three velocity components (u, �, and w),
the liquid water potential temperature (�l), the total
water mixing ratio (qt), and the rainwater mixing
ratio (qr � W/�, where � is the air density). The pres-
sure (p) is diagnosed through a Poisson equation. The
temperature (T ) and the cloud water mixing ratio
(qc) are diagnosed from the prognostic variables (�l, qt,
and qr) by assuming that all vapor in excess of the satu-
ration value is converted to cloud water. The lateral
boundary conditions of the numerical model are open,
such that the inflow is prescribed and the outflow is
extrapolated using the values at the closest two inner
grid points. The top and bottom boundary conditions
for vertical velocity are set to zero, and all other vari-
ables are defined such that their normal derivatives
vanish. A simple constant diffusion scheme is used to
parameterize turbulence and to maintain numerical
stability.

The 4DVAR scheme in VDRAS assimilates a series
of consecutive volumes of radar radial velocity and
rainwater content (converted from radar reflectivity)
within a specified assimilation window. By iteratively
adjusting the initial state of the model, a cost function
measuring the difference between the model forecast
and observations is reduced such that the forecast

TABLE 1. Bias and error of rain microphysics estimates with the SCG and MP model. Estimations of microphysical processes: Re,
Rc, and Vtm with the SCG model are generally improved, especially in the logarithm domain (numbers superscripted with asterisks).

Bias and error
(%)

Bias:
�X�E� � X�M��

|�X�M��|
Error:

�|X�E� � X�M�|�
|�X�M��|

Method SCG MP SCG MP
W/log(W )* �13.5/4.2* �13.1/16.3* 49.5/23.9* 49.4/27.0*
Re /log(Re)* 0.9/1.1* 14.4/7.8* 18.6/3.2* 40.1/8.2*
Rc /log(Rc)* �5.4/0.3* �4.4/2.9* 8.9/0.9* 13.7/3.3*
Vtm/log(Vtm)* �4.7/�2.3* �18/�12.8* 16.7/10.7* 21.7/15.1*
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matches the observations as closely as possible. The
cost function is defined as

J � �x0 � xb�TB�1�x0 � xb�

� �
�,t

�	v�
r � 
r
0�2 � 	w�W � Wo�2� � Jp, �24�

where x0 represents the model state at the beginning of
the assimilation window and xb represents the large-
scale background (e.g., an analysis using all obser-
vations other than radar observations). The symbol B
denotes the background covariance matrix and is as-
sumed diagonal and constant in this study. The variable
�r is the radial velocity computed from the model ve-
locity components; �o

r is the observed radial velocity; W
is the modeled rainwater content; and W0 is the rain-

water content estimated from radar reflectivity.
The terms �� and �w are weighting coefficients for
radial velocity and water content and are assumed
to be constant. To have comparable contributions from
the radial velocity and water content terms, �� � 1 and
�w � 100 in this study. The symbol Jp denotes the
spatial and temporal smoothness penalty term. The
function of the penalty term is to ensure a smooth fit to
the observations. Its exact form can be found in Sun
and Crook (2001). Minimization of (24) requires
knowledge of the gradient of the cost function, which is
provided by the adjoint of the forecast model. The SCG
model parameterization for rain microphysical pro-
cesses (21)–(23) is used in the forecast model and their
adjoint is derived to give the gradient for the variational
analysis.

FIG. 8. Comparison of microphysical parameterizations estimated from radar observations using the CG, SCG, and MP models. The
data were collected on 2 Sep 1998 with NCAR’s S-pol radar.
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The simulation domain is a region of 140 	 140 	 15
km3 with 70 	 70 	 30 grid points. The cloud model is
initialized by assimilating radar data from the Mel-
bourne, Florida, Weather Surveillance Radar-1988
Doppler (WSR-88D; KMLB). (For this storm, volu-
metric measurements with the polarization radar were
not available.) Thunderstorms examined here formed
in central Florida on 2 September as part of an outer
rainband associated with Hurricane Earl. Three volu-
metric datasets at 2310, 2315, and 2320 UTC, when the
storms were most intense, are used for model initializa-
tion with the 4DVAR technique. Figure 9 shows the
model domain and the locations of the KMLB and S-
pol radars, and a sounding site at the Kennedy Space
Center. The observed radial velocity (color) and reflec-
tivity (contour) from KMLB are also shown in Fig. 9.
The radar data were edited to eliminate contamination
caused by insects and ground clutter. Radar reflectivi-
ties (ZH � 5 dBZ) were converted to rainwater con-
tents using (9) and (20) for the SCG model and (5) for
the MP model. The first guess (and background) of the
4DVAR data assimilation is from a sounding released
at 1900 UTC (Fig. 10).

The initial conditions were found iteratively until a
step change of the cost function fell below a threshold
value. It took 117/105 iterations for the SCG/MP mod-

els. The initial condition from the 4DVAR was then
used to make forecasts with SCG and MP microphysi-
cal parameterizations. The model rainwater contents
are converted to radar reflectivities by solving inversion
problems of (9) and (20) for SCG model and (5) for the
MP model (using the two curves in Fig. 5). Figure 11
shows the reflectivity results at the first model level
(0.25 km above ground) for the initialization time (2320
UTC) and for 15-, 30-, 45-, and 60-min forecasts (2335,
2350, 0005, and 0020 UTC, respectively). The retrieved
wind field at the initialization time and the forecast
wind are overlaid on the reflectivity field. The left
(right) column presents results for the SCG model (MP
model) parameterization. The radar observations are
shown in the middle column for comparison.

Before examining the impact of microphysical pa-
rameterization on model forecasts some issues associ-
ated with the 4DVAR analysis need to be discussed.
Insertion of radar observations into the background
field shocks the system creating poorly represented
convergence and divergence regions that take some
time to dampen out. Regions of weak precipitation
seen primarily in the initialization for the SCG simula-
tion but not in the radar measurements are a manifes-
tation of this problem and because of the small contri-
bution to the cost function. Note that the spurious pre-
cipitation rapidly dissipates. As discussed below, the
problem is less evident with the MP parameterization.
The apparent better initialization with the MP model
could be due to a wrong reason of overestimation for
evaporation. If we look at the region for the reflectivity
�20 dBZ, the SCG model results agree with the obser-
vation better than that with the MP model. It is ex-
pected that the effect of the false weak precipitation on
the forecasts is small because the rainwater content in
these regions is very low (�0.03 g m�3). Neither of the
model simulations forecast the storms that develop in
the southern half of the data domain. The sources caus-
ing the storms were not fully included in model initial-
ization. The new convection may have modified the
inflow air to the storms in the northern portion of the
data domain. It is difficult to quantify the impact these
storms had on the observed convection and their ab-
sence had on the model simulation.

Our results suggest that the SCG model parameter-
ization has several advantages over the MP DSD
model. Stratiform precipitation in the upper-right cor-
ner is better represented in the model initialization and
is better preserved in the forecasts. This is because the
SCG parameterization leads to smaller evaporation and
accretion rates, as discussed in the previous section.
Also, the linearity at low evaporation (a constant de-
rivative) with the SCG model allows better conver-

FIG. 9. Configuration of observation systems [sounding, WSR-
88D (KMLB), S-Pol] and the simulation domain. It shows radial
velocity in m s�1 (color) and reflectivity (contour at 20 and 40
dBZ ) measured by KMLB at 2320 UTC.
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gence in the minimization and a more accurate fit with
observations. The SCG model forecasts of convective
cores (intensity) agree with radar observations better
than the MP model. The MP model tends to overpre-
dict rain intensity in the storm core while underfore-
casting the total storm coverage due to a rapid decay of
the stratiform rain, as shown in Fig. 11. To better illus-
trate the differences of the forecast storm intensity be-
tween the two parameterization schemes, the maximal
reflectivity factors and forecast rainwater contents for
cells 1 to 5 are listed in Table 2. It is clear that the
forecast reflectivity using the SCG parameterization is
significantly closer to the observed reflectivity for all
cells except for cell 4. The difference in the predicted
reflectivity values is due to overpredicted water con-
tents by the MP model and different W–Z relations
used in the SCG and MP model. Perhaps this is a result

of higher evaporation in convective storm cores with
the SCG model. In Fig. 12, we compare rainwater
contents from radar estimates and model forecasts at
the first level for the 30-min forecast. The forecast
results are shown for a threshold of W � 0.001 g m�3.
The upper-left panel is the water content estimated
from polarization radar (S-Pol) measurements of Z
and ZDR using Eq. (9). The upper-right panel is reflec-
tivity-based rainwater estimates from KMLB radar
with Eq. (5). The SCG model forecasted water contents
are consistent with the S-Pol radar estimates from re-
flectivity and differential reflectivity. The MP model
results do not agree with radar estimates from either
dual-polarization measurements or reflectivity only.
Clearly, the SCG forecasts agree with radar estimates
better the MP model in terms of both coverage and
intensity.

FIG. 10. Skew-T diagram for initial temperature, pressure, and wind profiles. The sounding data was collected
at Kennedy Space Center at 1900 UTC, 4 h and 20 min before the model starting time.
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To show the vertical structure of the storm, results at
y � �30 km at initialization and for 30-min forecasts
are plotted in Fig. 13. A radar bright band was not
evident in this warm rain system. Both the SCG and MP

model initializations have background residual precipi-
tation in the left-hand portions of the images, but the
SCG model initialization and forecasts agree with ob-
servations better than the MP model for rain aloft and

FIG. 11. Numerical weather forecasts based on (left) SCG and (right) MP model parameterizations. Radar
observations are shown in the middle column for comparison. Rows show the model and observed reflectivity field
at initialization (2320 UTC) and for 15-, 30-, 45-, and 60-min forecasts (2335, 2335, 2350, 0005, and 0020 UTC).
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near the ground. The high evaporation rate in the MP
model parameterization causes fast decay of rain with
low water content and prevents some stratiform rain
from reaching the ground (e.g., in Fig. 11 for all fore-
casts and in Fig. 13 for the 30-min forecast). The SCG
model results are more accurate and reasonable in
characterizing the spatial precipitation distribution and
storm evolution than the MP model. A number of co-
lumnar precipitation rainouts can be seen in Figs. 11
and 13 (e.g., see large gradients at the edge of some
convective cores). Rainouts, believed to be caused by
inconsistencies in the numerical model system associ-
ated with gradients, occur less frequently with the SCG

model. To quantify the forecast results, Fig. 14 shows
the frequency distribution of reflectivity values (Z � 15
dBZ) of 2350 UTC at height of 0.25, 2.75, and 5.25 km
(Yuter and Houze 1995). Histograms are shown for
both radar observations and model forecasts. In gen-
eral, the forecast results with the SCG model agree with
radar observations better than the MP model results.

5. Summary and discussion

This paper presents a parameterization scheme for
rain microphysical processes based on a constrained-
gamma DSD model developed from disdrometer and

FIG. 12. Comparison of rainwater content (g m�3) from radar estimates and model forecasts for the
first level at 2350 UTC.

TABLE 2. Comparison of 30-min forecasts between the SCG and MP model parameterizations

Observation or forecast Radar observation SCG model MP model

Parameters Z, dBZ Z, dBZ W, g m�3 Z, dBZ W, g m�3

Cell 1 47.7 50.9 3.12 55.8 5.35
Cell 2 46.1 46.7 1.67 53.3 3.81
Cell 3 44.4 43.9 1.11 54.1 4.23
Cell 4 47.4 49.8 2.65 48.3 1.98
Cell 5 46.4 47.6 1.90 52.1 3.28
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polarization radar observations. The CG DSD model
yields smaller evaporation and accretion rates as well
as their derivatives than the MP model for strati-
form rain, and higher Re and Rc in the core regions of
convective storms. The CG model parameterization
was further simplified to a single-parameter scheme
(SCG) in which the microphysical process parameters
are expressed by polynomial functions of rainwater
content. The exponent polynomial form has better per-
formance (continuity and linearity) at lower water con-
tents than the power-law form of the MP model. The
SCG model parameterization produces better varia-
tional analysis for model initialization and better short-
term forecasts for warm rain processes by (i) preserving
the stratiform component of the precipitation and (ii)
predicting the intensity of convective cores more accu-
rately than MP model parameterization. This is because
the SCG model yields less (more) evaporation and ac-
cretion than the MP model at low (high) rainwater
content.

Parameterization coefficients have often been em-
pirically adjusted to produce better forecasts. Such ad-
justments may be applicable because evaporation, ac-
cretion, and precipitation also depend on temperature,
humidity, and storm dynamical processes that are not

included in microphysical parameterization and be-
cause of smoothing effects in model simulation. Reduc-
ing the evaporation and accretion terms may improve
forecast results, but the problems associated with the
nonlinear power-law functions remain. It is important
to have the correct functional forms for the microphysi-
cal process parameters before adjusting their coeffi-
cients. Accurate microphysical parameterization based
on advanced measurement techniques such as polariza-
tion radar observations and disdrometer measurements
is highly desirable and feasible. Because radar provides
large coverage weather observations and a 2D video
disdrometer measures ground truth, a combination of
polarization radar and disdrometer measurements
makes observation-based model parameterization reli-
able and useful.

The CG and SCG model parameterizations derived
in this study can be applied to two-moment and one-
moment numerical weather models, respectively. We
applied the SCG model parameterization in VDRAS in
this study because volumetric polarization radar data
were not available and a two-moment data assimilation
system has not been developed. The SCG model pa-
rameterization is a single-moment parameterization,
much like the MP model, without adding an additional

FIG. 13. As in Fig. 11 except for vertical profiles at Y distance of �30 km at initialization, and for 30-min forecasts.
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variable to a numerical model. The application of the
SCG model in VDRAS is just the first step in using the
CG model in NWP. The results shown in this paper are
not necessarily the best, as there are many factors af-
fecting model forecasting. Nevertheless, it has been
shown that (i) the single-parameter SCG model yields
better model initialization and forecast results than the
MP model, and (ii) the two-parameter CG model has
potential to further improve NWP. Future work will be
on applying the CG parameterization to a two-moment
numerical weather model so that both radar reflectivity
and differential reflectivity are used to characterize rain
microphysics, to initialize the model, and to verify the
forecast.

Acknowledgments. The research was supported by
NCAR Director’s Opportunity Fund and by funds from
the National Science Foundation that have been desig-
nated for U.S. Weather Research Program activities at
the National Center for Atmospheric Research
(NCAR). We sincerely appreciate helpful discussions
with Ms. Ying Zhang, Drs. Frederick H. Carr, Kelvin K.
Droegemeier, Jerry Straka, Ming Xue, and Dusan S.
Zrnic.

APPENDIX

Derivation of Rain Microphysical Process
Parameters for the Constrained-Gamma

Drop Size Distribution

Rain microphysical process parameters: evaporation
rate (Re), accretion rate (Rc), and mass-weighted ter-
minal velocity (Vtm) depend on the rain drop size dis-
tribution (DSD). For a given rain DSD, such as con-
strained-gamma model, the microphysical processes
can be represented by the DSD parameters or model
forecasting parameters (rainwater content and droplet
size). Following Kessler (1969) and Brandes et al.
(2006), the parameters Re, Rc, and Vtm are derived as
follows.

a. Evaporation rate (Re)

As given in Eq. (8.28) of Kessler (1969), the rate of
evaporation of a single raindrop is rewritten with a unit
conversion as

�Me

�t
� 3.55 	 10�7EemeD

8�5�D in mm�, �A1�

FIG. 14. Histograms of reflectivity values at heights of 0.25, 2.75, and 5.25 km for radar
observations and model forecasts. The results are for 2350 UTC, 30-min forecasts.
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where the evaporation coefficient is Ee, D is the rain-
drop diameter, and me is the vapor saturation deficit.

Integrating (A1) over all diameters [Dmin, Dmax] for a
gamma DSD (6) yields the rainwater evaporation rate as

Re � �
Dmin

Dmax �Me

�t
N�D� dD

� 3.55 	 10�7EemeN0�
Dmin

Dmax

D��8�5 exp���D� dD

� 3.55 	 10�7EemeN0�����13�5� ����Dmax, � � 13�5� � ���Dmin, � � 13�5��. �A2�

Replacing N0 in (A2) with W using (8), we obtain

Re � 3.55 	 10�7
6W����4�

�w 	 10�3�����Dmax,� � 4� � ���Dmin,� � 4��

	 Eeme�
����13�5� ����Dmax,� � 13�5� � ���Dmin,� � 13�5��

� 6.78 	 10�4EemeW�7�5 ����Dmax,� � 13�5� � ���Dmin,� � 13�5��

����Dmax,� � 4� � ���Dmin,� � 4��
�g m�3 s�1� �A3�

b. Accretion rate (Rc)

Accretion is the cloud water swept out and accumu-
lated by raindrops. The rate of accretion for a single
raindrop is given by Kessler (1969) in the Eq. (8.21) as

�Mc

�t
� 10�6

�D2

4
Ec�D�
�D�mc�D in mm�, �A4�

where the collection efficient is Ec(D), �(D) is the fall-
ing velocity of the raindrop, and m is the cloud water
content. The collection efficiency E(D) is usually as-

sumed to be constant. The terminal velocity is that of
Brandes et al. (2002)


 � �0.1021 � 4.932D � 0.9551D2 � 0.07934D3

� 0.002362D4 � �
l�0

4

clD
l. �A5�

Substituting (A5) into (A4), integrating the gamma
DSD (6) over all diameters, and replacing N0 with W
using (8), we obtain the accretion rate as

Rc � �
Dmin

Dmax �Mc

�t
N�D� dD

� 10�6�
Dmin

Dmax �D2

4
Ec�D�
�D�mcN�D� dD

�
�

4
	 10�6EmcN0�

Dmin

Dmax

D2�
l�0

4

clD
��l exp���D� dD

�
�

4
	 10�6Ecmc

6W����4�

�w 	 10�3�����Dmax, � � 4� � ���Dmin, � � 4��

	 �
l�0

4

cl�
����l�3�����Dmax, � � l � 3� � ���Dmin, � � l � 3��

�
3
2

	 10�3EcmcW �
l�0

4

cl�
�l�1 ����Dmax, � � l � 3� � ���Dmin, � � l � 3��

����Dmax, � � 4� � ���Dmin, � � 4��
�g m�3 s�1�. �A6�
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c. Mass-weighted terminal velocity (Vtm)

The mass-weighted terminal velocity for a gamma rain DSD model is calculated from its definition and (A5) as
follows:

Vtm �

�
Dmin

Dmax

D3
�D�N�D� dD

�
Dmin

Dmax

D3N�D� dD

�

�
l�0

4

cl�
Dmin

Dmax

Dl�3N�D� dD

�
Dmin

Dmax

D3N�D� dD

�

�
l�0

4

cl�
Dmin

Dmax

D��l�3 exp���D� dD

�
Dmin

Dmax

D��3 exp���D� dD

� �
l�0

4

cl�
�l ����Dmax, � � l � 4� � ���Dmin, � � l � 4��

����Dmax, � � 4� � ���Dmin, � � 4��
�m s�1�. �A7�

Hence, (A3), (A6), and (A7) constitute microphysical
parameterization based on a gamma rain DSD model.
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