Compressive Sampling for Detection of Frequency-Hopping Spread Spectrum Signals

Feng Liu, Michael W. Marcellin, Fellow, IEEE, Nathan A. Goodman, Senior Member, IEEE, and Ali Bilgin, Senior Member, IEEE

Abstract—In this paper, methods for detection of frequency-hopping spread spectrum (FHSS) signals from compressive measurements are proposed. Rapid switching of the carrier frequency in a pseudorandom manner makes detection of FHSS signals challenging. Conventionally, FHSS detection is performed by scanning small segments of the spectrum in a sequential manner using a sweeping spectrum analyzer (SSA). However, SSAs have the inherent risk of missing the transmitted signal depending on factors such as the rate of hopping and scanning. In this paper, we propose compressive detection strategies that sample the full FHSS spectrum in a compressive manner. We discuss the use of random measurement kernels as well as designed measurement kernels in the proposed architecture. The measurement kernels are designed to maximize the mutual information between the FHSS signal and the compressive measurements. Using a mixture-of-Gaussian model to represent the FHSS signal, we derive a closed-form gradient of the mutual information with respect to the measurement kernel. Theoretical analysis and simulation results are provided to compare different systems. These results demonstrate that the proposed compressive system with random measurement kernels is not subject to the performance limitations suffered by SSAs when their scanning rates are low and designed adaptive measurement kernels provide enhanced detection performance compared to random ones.

Index Terms—Spread spectrum, FHSS, sweeping spectrum analyzer (SSA), compressive detection, mutual information, adaptive detection.

I. INTRODUCTION

FREQUENCY-hopping spread spectrum (FHSS) is a spread spectrum (SS) modulation technique used in communication systems [1]. In FHSS, the spectrum of the signal is spread by switching the carrier frequency in a pseudo-random manner. The pseudo-random switching sequence used by the transmitter is known to a cooperative receiver and, thus, the transmitter/receiver pair can communicate in synchronization using the same carrier frequency. The rapidly switching carrier frequency of FHSS systems enables several desirable attributes: first, the instantaneous interference from FHSS signals to other signals is often insignificant since the period of interference is limited by the hopping period. Similarly, the FHSS signals are also resistant to interference from other signals since they do not occupy a fixed frequency range for extended periods. This property also makes FHSS signals resistant to jamming. Finally, the rapid switching of the carrier frequency makes detection of FHSS signals challenging as well. Since the FHSS signals can hop over very large bandwidths, the observation of such large bandwidths for signal detection presents significant challenges to conventional detectors.

Although many novel detection methods (e.g. autocorrelation based [2]–[5], wavelet-based [2], [6]–[10], likelihood based [11]–[16], time-frequency feature analysis based [6], [17]–[21]) have been proposed in the literature, the most common method for detection of FHSS signals is to use channelized radiometers to measure signal energy [22]–[24]. A typical radiometer uses a bandpass filter to select the frequency band over which measurements are made. Since FHSS signals hop over large frequency ranges, energy measurements are needed over these large bandwidths. If the FHSS signal can be sampled at a high enough rate to capture the full FHSS bandwidth, a digital filterbank can be used to detect energy in each channel. However, capturing the entire FHSS bandwidth often requires very high-rate analog-to-digital converters. A common method to measure energy over a large frequency range is to use a sweeping spectrum analyzer (SSA) [15], [25]–[29]. An SSA sequentially scans frequency bands and measures signal energy in each frequency band. However, the detection performance of the SSA is highly dependent on its scanning rate and the hopping rate of the FHSS signal. If the scanning rate of the SSA is not high enough, the scanning support can miss the hopping signal.

In this paper, motivated by the recent compressive sensing (CS) theory [30], [31], we propose methods for detection of FHSS signals from compressive measurements. While most of the compressive sensing methods aim to reconstruct a signal by exploiting its sparsity, our goal is to detect the presence of the FHSS signals. Several methods for compressive detection were proposed in the literature over the last decade [32]–[38]. Some of these methods assume that the signal can be sparsely represented in known dictionaries [33], [35], [37], [38]. Others assume precise knowledge of the signal [32] or propose to learn the signal sparsity model from training signals [34]. The compressive detection methods in this paper are based on energy detection and only require knowledge of the signal variance.
An FHSS signal can be represented as:

\[s(t) = A(t)e^{j(2\pi f_c(t))} \]

where \(A(t) \) denotes the signal in baseband and \(f_c(t) \) denotes the time-varying carrier frequency. By changing the carrier frequency \(f_c(t) \) randomly at certain time intervals, the FHSS signal switches among many frequency channels. Let \(B \) denote the full frequency hopping range of the FHSS signal. Let’s also assume that the SSA uniformly divides this range into \(N_h \) subbands which are scanned sequentially. Then, the Nyquist sampling rate used to scan each subband is computed with respect to the bandwidth of each subband \(B/N_h \). Let \(\alpha \) denote the relative scanning rate which is defined as the number of scanning intervals per FHSS hopping period. Mathematically, \(\alpha \) can be expressed as:

\[\alpha = \frac{N_s}{N_h} \]

where \(N_s \) denotes the number of subbands scanned within a given time period and \(N_h \) denotes the number of frequency hops during the same period. Note that when \(\alpha \geq N_h \), SSA scans the entire hopping frequency range before the FHSS signal hops. We refer to this regime as the fast scanning regime. Conversely, when \(\alpha < N_h \), the signal hops before the SSA scans the entire hopping frequency range. We refer to this regime as the fast hopping regime. To simplify our analysis, we assume that \(\alpha \) is either a rational number of 1 divided by a positive integer or a positive integer that can divide or be divided by \(N_h \).

During the \(i \)th scanning interval, the relationship between the measurement vector \(y_i \) and the FHSS signal \(s_i \) can be modeled by:

\[y_i = \Phi_i(s_i + n_i) \]

where \(n_i \) denotes the additive channel noise and \(\Phi_i \) denotes the matrix representation of the measurement kernel during the \(i \)th scanning interval. Here, measurements are obtained by applying a bandpass filter to the noisy input signal so the matrix \(\Phi_i \) represents this bandpass filtering process. In this discretized notation, if the signal \(s_i \) is discretized at the Nyquist rate corresponding to the full hopping bandwidth to yield \(N \) samples and \(M \) measurements are made during the \(i \)th scanning interval, the matrix \(\Phi_i \) will have the dimensions \(M \times N \). The channel noise \(n_i \) is modeled as complex zero-mean additive white Gaussian noise with variance \(\sigma_n^2 \) covering the entire FHSS hopping range. To simplify our derivations, \(s_i \) is modeled as a complex zero-mean Gaussian white signal with variance \(\sigma_s^2 \) within the scanning support that it falls in.

During each scanning period, the decision on the presence or absence of the FHSS signal can be made based on energy detection. This detection problem can be formulated as a choice between two hypotheses:

\[H_{0,i} : y_i = \Phi_i n_i \]

\[H_{1,i} : y_i = \Phi_i (s_i + n_i) \]

where \(H_{0,i} \) and \(H_{1,i} \) denote the signal absent and signal present hypotheses in the \(i \)th scanning interval, respectively. Given the
detection decisions made in all scanning intervals, the final detection decision is made after the entire FHSS hopping range is observed. If the decision “signal present” is made in at least one of the scanning intervals, the final decision “signal present” is made; otherwise, the final decision “signal absent” is made.

Let \(\lambda_i = \|y_i\|^2_2 \) denote the measurement energy during the \(i \)th scanning interval where \(\| \cdot \|^2_2 \) denotes the squared 2-norm operation. Assuming that the low-pass filter in Fig. 1 is ideal, the variance of the input signal is preserved in the measurement since \(\Phi_i \) is row-wise orthonormal, i.e., \(\Phi_i^H \Phi_i = I_M \), where \(^H \) represents the conjugate transpose (Hermitian) operation and \(I_M \) denotes the \(M \times M \) identity matrix. Then \(\lambda_i \) is the sum of the energies of \(M \) independent and identically distributed (i.i.d.) zero-mean circularly-symmetric Gaussian random variables with the variances of \(\sigma_n^2 \). Equivalently, \(\lambda_i \), can also be expressed as the sum of squares of \(2M \) i.i.d. zero-mean Gaussian real random variables with variances \(\frac{\sigma_n^2}{2} \). Let \(E_i = \frac{\lambda_i}{\sigma_n^2} \), \(E_i \) is central \(\chi^2 \)-distributed with \(2M \) degrees of freedom [45]:

\[
p(E_i | H_{0,i}) = \frac{E_i^{(M-1)/2}}{2^M \Gamma(M)} e^{-\frac{E_i}{2}}
\]

where \(\Gamma(\cdot) \) denotes the gamma function. Thus, the distribution of \(\lambda_i \) when the signal is absent is given by:

\[
p(\lambda_i | H_{0,i}) = \frac{(\frac{2\lambda_i}{\sigma_n^2})^{(M-1)/2} \frac{\lambda_i^{(M-1)/2}}{2^M \Gamma(M)} e^{-\frac{\lambda_i}{2\sigma_n^2}}}{\sigma_n^{2M} \Gamma(M)}.
\]

Using the distribution in (7), the theoretical false positive rate (FPR) during the \(i \)th scanning interval is calculated by:

\[
FPR_i = \int_{T_i}^{\infty} p(\lambda_i | H_{0,i}) d\lambda_i
\]

where \(T_i \) denotes the detection threshold used during the \(i \)th scanning interval. The overall theoretical FPR (i.e., the FPR associated with the final detection decision after all \(N_b \) subbands are scanned) is then calculated by:

\[
FPR = 1 - TNR = 1 - \prod_{i=1}^{N_b} TNR_i = 1 - \prod_{i=1}^{N_b} (1 - FPR_i)
\]

where \(TNR_i \) denotes the theoretical true negative rate (TNR) during the \(i \)th scanning interval.

When the signal is present, the overall false negative rate (FNR) depends on the relative scanning rate \(\alpha \). If the scanning rate is not faster than the FHSS hopping rate (i.e., \(\alpha \leq 1 \)), the scanning intervals are independent. The distribution of the measurement energy during the \(i \)th scanning interval is then calculated as:

\[
p(\lambda_i | H_{1,i})
= \sum_{k=0}^{\frac{1}{\alpha}} \binom{\frac{1}{\alpha}}{k} (p_i)^k (1 - p_i)^{\frac{1}{\alpha} - k} \frac{\lambda_i^{(M-1)/2}}{\sigma_n^{2M} \Gamma(M)} e^{-\frac{\lambda_i}{2\sigma_n^2}}
\]

where \(p_i \) denotes the probability that the \(i \)th subband is occupied by the FHSS signal at any given time. Mathematically,

\[
p_i = Pr \left(f_{\min} + \left(\frac{i - 1}{\alpha} \right) B < f_c(t) < f_{\min} + \frac{i}{\alpha} B \right)
\]

where \(f_{\min} \) denotes the lower bound of the frequency hopping range.

Note that when \(\alpha \leq 1 \), the FHSS signal can occupy the scanned subband multiple times during a scanning interval and, therefore, \(p(\lambda_i | H_{1,i}) \) becomes a mixture of chi-squared distributions as shown in (10). Using the distribution in (10), the theoretical FNR during the \(i \)th scanning interval is given by:

\[
FNR_i = \int_{-\infty}^{T_i} p(\lambda_i | H_{1,i}) d\lambda_i.
\]

The overall theoretical FNR (i.e. the FNR associated with the final detection decision after all \(N_b \) subbands are scanned) is then given by:

\[
FNR = \prod_{i=1}^{N_b} FNR_i.
\]

Next, we consider the case when \(1 < \alpha < N_b \). In this case, the scanning rate is fast enough to cover multiple subbands during a single hopping period. More specifically, the SSA can scan \(\alpha \) subbands before the FHSS signal hops. We can therefore consider that the entire set of \(N_b \) subbands are divided into \(\frac{N_b}{\alpha} \) groups with \(\alpha \) subbands each. We refer to these as scan groups. Let \(j \) denote the scan group index. Since there are \(\frac{N_b}{\alpha} \) scan groups, \(j \in \{1, 2, \ldots, \frac{N_b}{\alpha} \} \). Similarly, we will use \(i \) to denote the subband (or equivalently scanning interval) index. Since there are \(N_b \) subbands, \(i \in \{1, 2, \ldots, N_b \} \). It can be seen that subbands \(i = 1, 2, \ldots, \alpha \) will be scanned during scan group \(j = 1 \), subbands \(i = \alpha + 1, \alpha + 2, \ldots, 2\alpha \) will be scanned during scan group \(j = 2 \), and so on. Let us denote the FNR during the \(j \)th scan group as \(FNR_{g,j} \), where the subscript “\(g \)” denotes “group”. In order to calculate this value, we need to consider two cases: When the signal falls within the support of the \(j \)th scan group and when it falls out of this support during the time period associated with the \(j \)th scan group. In our subsequent notation, we will use “\(gp \)” to denote “group when signal present” and “\(ga \)” to denote “group when signal absent.” Let us denote the FNR corresponding to each of these cases using \(FNR_{gp,j} \) and \(FNR_{ga,j} \), respectively. Then the FNR during the \(j \)th scan group can be expressed as:

\[
FNR_{g,j} = FNR_{gp,j} + \left[1 - \sum_{i=(j-1)\alpha+1}^{j\alpha} p_i \right] FNR_{ga,j}.
\]

In (14), the term \(\left[1 - \sum_{i=(j-1)\alpha+1}^{j\alpha} p_i \right] \) corresponds to the probability of the signal being outside the support of the \(j \)th scan group. When the signal is within the support of the \(j \)th scan group, it will occupy one of the subbands \((j - 1)\alpha + 1 \)th
through \(j \alpha \text{th} \). Therefore, we can express \(\text{FNR}_{\text{gp},j} \) as:

\[
\text{FNR}_{\text{gp},j} = \sum_{i=(j-1)\alpha + 1}^{j\alpha} p_i \text{FNR}_{\text{gp},i,j}
\]

(15)

where \(\text{FNR}_{\text{gp},i,j} \) denotes the FNR when the signal falls into the support of the \(i \text{th} \) scanning interval during the time interval of the \(j \text{th} \) scan group. \(\text{FNR}_{\text{gp},j} \) can be calculated as the product of two terms:

\[
\text{FNR}_{\text{gp},j} = \text{FNR}_{\text{gp},i,j} \cdot \text{FNR}^\prime_{\text{gp},i,j}.
\]

(16)

Here, \(\text{FNR}^\prime_{\text{gp},i,j} \) denotes the FNR when the signal falls within the \(i \text{th} \) subband during the \(j \text{th} \) scan group and \(\text{FNR}_{\text{gp},i,j} \) denotes the FNR when the signal falls within one of the other subbands (i.e., subbands \(k \in \{(j-1)\alpha + 1, \ldots, j\alpha\}, k \neq i \)) within the support of the \(j \text{th} \) scan group. These quantities can be calculated as:

\[
\text{FNR}_{\text{gp},i,j} = \int_{-\infty}^{T_i} \frac{\lambda_i (M-1) e^{-\frac{\sigma_n^2}{2} \lambda_i}}{(N_b \sigma_n^2 + \sigma_n^2)^M \Gamma(M)} d\lambda_i
\]

(17)

and

\[
\text{FNR}^\prime_{\text{gp},i,j} = \prod_{k=(j-1)\alpha + 1}^{j\alpha} \int_{-\infty}^{T_k} \frac{\lambda_k (M-1) e^{-\frac{\sigma_n^2}{2} \lambda_k}}{\sigma_n^2 2^M \Gamma(M)} d\lambda_k
\]

(18)

\[
\text{FNR}^\prime_{\text{gp},i,j} = \prod_{k=(j-1)\alpha + 1}^{j\alpha} \int_{-\infty}^{T_k} \frac{\lambda_k (M-1) e^{-\frac{\sigma_n^2}{2} \lambda_k}}{\sigma_n^2 2^M \Gamma(M)} d\lambda_k
\]

(18)

respectively. Similarly, \(\text{FNR}_{\text{ga},j} \) can be calculated as:

\[
\text{FNR}_{\text{ga},j} = \prod_{i=(j-1)\alpha + 1}^{j\alpha} \int_{-\infty}^{T_i} \frac{\lambda_i (M-1) e^{-\frac{\sigma_n^2}{2} \lambda_i}}{\sigma_n^2 2^M \Gamma(M)} d\lambda_i,
\]

(19)

since it is the FNR corresponding to when the signal is not within the support of the \(j \text{th} \) scan group. The overall theoretical FNR (after all scan groups have been scanned) for this case is given by:

\[
\text{FNR} = \prod_{j=1}^{N_b} \text{FNR}_{\text{gp},j}.
\]

(20)

Finally, we consider the case when the scanning rate is much faster than the hopping rate such that the scanner can scan all \(N_b \) subbands before the signal hops. In this case, \(\alpha \geq N_b \). It is easy to see that this case can be considered as having a single scan group which contains all subbands. Therefore, the FNR in this case can be obtained by setting \(j = 1 \) and \(\alpha = N_b \) in (15). This yields:

\[
\text{FNR} = \sum_{i=1}^{N_b} p_i \text{FNR}_{\text{gp},i,1}.
\]

(21)

The FPR and FNR calculated in this section can be used to evaluate the detection performance of SSAs. As we will illustrate in Section V, SSAs suffer from a “floor” problem in their FNR when \(\alpha < N_b \). This floor is due to the non-zero probability that the SSA misses the hopping signal if the scanning rate of the SSA is not fast enough to cover the entire hopping range before the signal hops. A detailed evaluation of this floor problem is presented in Section V.

III. COMPRESSION DETECTION OF FHSS SIGNALS

The recent CS theory, as presented in the seminal works of Cand"{e}s et al. [30] and Donoho [31], provides a novel perspective on sufficient sampling. This new perspective resulted in extensive research on compressive systems over the past decade. Motivated by the CS theory, we investigate compressive approaches to detect the presence or absence of FHSS signals in this work. We start this section by introducing our compressive detection framework. The block diagram of the proposed framework is shown in Fig. 2. In this architecture, the noisy input signal is mixed with wide-band measurement kernels and passed through a low-pass filter. The output of the low-pass filter is sampled at a rate much lower than the one suggested by the Nyquist sampling theorem for the full FHSS hopping bandwidth. Therefore, this measurement system is compressive. The compressive measurements are then used to detect the presence or absence of FHSS signals. It is worth pointing out that this architecture is very similar to the SSA architecture shown in Fig. 1 with the exception that the measurements are obtained using wide-band measurement kernels in this case whereas the SSA uses band-limited measurement kernels. Similar compressive measurement structure was also used in [39] to sense the input signal compressively with different kinds of measurement kernels discussed. In contrast, the sparsity of the signal was observed and CS algorithms were discussed in [39] in order to reconstruct the signal from the compressive measurements.

In this framework, the relationship between the measurement vector \(y \) and the signal \(s \) can be modeled by

\[
y = \Phi (s + n)
\]

(22)

where \(n \) denotes the complex additive white Gaussian channel noise with zero-mean and variance \(\sigma_n^2 \) over the entire SS range.

In our analysis, we divide the measurement process into \(N_b \) sequential observation intervals. Note that the proposed compressive detection method can work with any number of measurements and this division of the measurement process into sequential observation intervals is not strictly necessary. However, we analyze the performance of the proposed method under these conditions to allow a fair comparison with the SSA-based system. During each observation interval \(i \), the measurements, the signal, and the channel noise are denoted by \(y_i \), \(s_i \), and \(n_i \), respectively. Naturally, by concatenating \(y_i \), for \(1 \leq i \leq N_b \), the full measurement vector \(y \) can be obtained. Similarly, the signal vector \(s \) and the noise vector \(n \) can be obtained by concatenating vectors \(s_i \) and \(n_i \), respectively, for \(1 \leq i \leq N_b \). During each observation interval, the complex \(M \times N \) measurement

![Fig. 2. Block diagram of the proposed compressive detector.](image-url)
kernel is denoted by \(\Phi_i \). The full measurement matrix \(\Phi \) is a \(MN_b \times NN_b \) block-diagonal matrix where the diagonal blocks consist of \(\Phi_i \) for \(1 \leq i \leq N_b \).

The detection problem can be formulated as a decision between two hypothesis:

\[
H_0 : y = \Phi n \\
H_1 : y = \Phi(s + n)
\]
(23)
(24)

where \(H_0 \) and \(H_1 \) denote the signal absent and signal present hypotheses, respectively.

Since we are interested in compressive measurements, it is worth defining the compression ratio (CR) in this setting. Given that \(N \) is the number of samples needed to sample the signal at the Nyquist rate and \(M \) is the number of measurements during each observation interval, the CR is given by \(CR = \frac{N}{M} \). For the measurement system shown in Fig. 2, the measurement matrix in each observation interval, \(\Phi_i \), is block-diagonal where each block is a \(1 \times CR \) vector.

Most of the existing CS signal recovery methods rely on random measurement kernels since random measurement kernels yield, with high probability, incoherent measurements with any sparsity domain. In our compressive detection framework, random measurements can be obtained by randomly selecting the non-zero entries of the measurement matrix \(\Phi \). Assuming such \(\Phi \) with normalized rows and modeling the FHSS signal \(s \) as a complex zero-mean Gaussian white signal with the variance \(\sigma_s^2 \), the measurements are i.i.d. Gaussian and, therefore, the distribution of measurement energy, which is defined as \(\lambda = \|y\|^2_2 \), follows the central chi-squared distribution for the signal absent case:

\[
p(\lambda|H_0) = \frac{\lambda^{(MN_b-1)/2}e^{-\lambda/2}}{\sigma_s^{2MN_b} \Gamma(MN_b/2)}.
\]
(25)

Similar to (25), the distribution of the measurement energy \(\lambda \) for the signal present case follows the central chi-squared distribution given by:

\[
p(\lambda|H_1) = \frac{\lambda^{(MN_b-1)/2}e^{-(\sigma_s^2 + \sigma_n^2)\lambda/2}}{(\sigma_s^2 + \sigma_n^2)^{MN_b} \Gamma(MN_b/2)}.
\]
(26)

Given a threshold \(T \), the theoretical FPR of this compressive detection system is calculated by:

\[
\text{FPR} = \int_T^\infty p(\lambda|H_0) d\lambda
\]
(27)

and the theoretical FNRR is calculated by:

\[
\text{FNR} = \int_{-\infty}^T p(\lambda|H_1) d\lambda.
\]
(28)

From (27) and (28), we can see that the performance of our proposed compressive detection system does not depend on the relative measurement rate \(\alpha \). This is an important advantage of the proposed compressive detection system over the SSA based detection systems. Results shown in Section V will quantify this advantage.

IV. KNOWLEDGE ENHANCED COMPRESSIVE DETECTION OF FHSS SIGNALS

In the previous section, a compressive detection framework using random measurement kernels was proposed. While most of the CS literature uses random measurement kernels, there is existing work [46], [47] which illustrates that compressive measurement kernels designed using prior knowledge of the signal and the measurement system can improve performance. Motivated by [46], [47], we extend our compressive detection framework to consider the use of designed measurement kernels in this section.

Specifically, we propose to design measurement kernels that maximize the mutual information between the FHSS signal and the measurements. This design procedure can be described as follows: recall from Section III that the measurement process is divided into \(N_b \) sequential observation intervals. During the observation interval \(i \), the \(M \times N \) measurement kernel is denoted by \(\Phi_i \). As illustrated in Section III, only a small fraction of the entries in each row of \(\Phi_i \) are non-zero. Let \(\Phi_{i,m} \) denote the non-zero entries in the \(m^{th} \) row of this measurement matrix \(\Phi_i \). Let \(s_{i,m}, n_{i,m} \) and \(y_{i,m} \) denote the signal, the noise, and the measurement, respectively, during the time interval corresponding to \(\Phi_{i,m} \). Similar to the random compressive measurement kernel, we add one additional constraint in the optimization process that \(\Phi_{i,m} \) is normalized. The goal of measurement kernel design is to obtain \(\Phi_{i,m} \) such that:

\[
\Phi_{i,m} = \arg \max \mathbb{E}[y_{i,m} : s_{i,m}]
\]

s.t. \(y_{i,m} = \hat{\Phi}_{i,m} (s_{i,m} + n_{i,m}) \) and \(\|\Phi_{i,m}\|_2 = 1 \)
(29)

where \(\mathbb{E}[y_{i,m} : s_{i,m}] \) denotes the mutual information between the measurement \(y_{i,m} \) and the FHSS signal \(s_{i,m} \). In other words, the goal of the measurement kernel design is to maximize the information about the signal in the measurements. The mutual information metric in (29) can be expanded as:

\[
I(y_{i,m} : s_{i,m}) = h(y_{i,m}) - h(y_{i,m} | s_{i,m}).
\]
(30)

We note that the conditional differential entropy term \(h(y_{i,m} | s_{i,m}) \) depends only on the noise power when \(\|\Phi_{i,m}\|_2 = 1 \) and has no effect on the maximization problem of (29) for a given noise level. This can be seen by considering the conditional differential entropy:

\[
h(y_{i,m} | s_{i,m}) = h((\hat{\Phi}_{i,m} n_{i,m} + \hat{\Phi}_{i,m} s_{i,m}) | \hat{\Phi}_{i,m} s_{i,m})
\]

\[
= h(\hat{\Phi}_{i,m} n_{i,m}).
\]
(31)

When \(\|\Phi_{i,m}\|_2 = 1 \), \(\Phi_{i,m} n_{i,m} \) is a zero-mean circularly-symmetric jointly-Gaussian complex random vector and, thus, \(h(y_{i,m} | s_{i,m}) \) depends only on the noise power. Therefore, an equivalent form of (29) can be given as:

\[
\Phi_{i,m} = \arg \max \mathbb{E}[y_{i,m}]
\]

s.t. \(y_{i,m} = \hat{\Phi}_{i,m} (s_{i,m} + n_{i,m}) \) and \(\|\Phi_{i,m}\|_2 = 1 \).
(32)

The problem represented by (32) can be computationally challenging to solve for arbitrary signals. To achieve a
computationally efficient solution, we utilize a mixture-of-Gaussian (MoG) model to represent the FHSS signal. MoG distributions are commonly used in signal processing applications since they allow an accurate description of many real-world signals and are often mathematically tractable. Recently, there has also been interest in using MoG models in CS applications [47]–[51]. In our application, the use of the MoG model allows efficient solution of the problem in (32) through the use of a closed-form gradient approximation. In our model, we uniformly divide the FHSS hopping range into \(N_b \) subbands. Within each subband, the distribution of the FHSS signal is modeled as a complex zero-mean Gaussian white signal with variance \(\sigma_z^2 \). This MoG distribution is given by:

\[
g(s_{i,m}) = \sum_{l=1}^{N_b} w_l \mathcal{C}(0, \Sigma_l^{(j)})
\]

(33)

where \(w_l \) denotes the weight of the \(l \)-th Gaussian component, and \(\mathcal{C}(0, \Sigma_l^{(j)}) \) denotes the probability density function of a complex zero-mean white Gaussian random variable within the \(l \)-th subband, and \(\Sigma_l^{(j)} \) denotes the corresponding covariance matrix. Since the \(l \)-th component of the MoG represents the FHSS signal within the \(l \)-th subband as a complex zero-mean Gaussian white signal with variance \(\sigma_z^2 \), the covariance \(\Sigma_l^{(j)} \) can be calculated by computing the product of the autocorrelation of the impulse response of the ideal bandpass filter with its passband as the \(l \)-th subband and the variance \(\sigma_z^2 \). It can be seen that each component in this MoG model represents the FHSS signal in one of the \(N_b \) subbands.

Given this MoG model, additive white Gaussian noise, and the constraint that the rows of \(\Phi \) are normalized, it can be shown that the problem in (32) can be further reduced to:

\[
\Phi_{i,m} = \arg \max_{\Phi_{i,m}} h(y_{i,m}|H_1) \quad \text{s.t.} \quad \|
\Phi_{i,m}
\|_2 = 1
\]

(34)

where \(h(y_{i,m}|H_1) \) denotes the entropy of the measurement in the signal present case. Details of the derivations used to obtain this result are given in the Appendix. In order to solve (34), an iterative gradient method is implemented. At each iteration, \(\Phi_{i,m} \) is refined using:

\[
\Phi_{(j+1)}^{(i,m)} = \frac{X}{\|X\|_2} \quad \text{and} \quad h(y_{i,m}|H_1) = \mu \nabla_{\Phi_{i,m}} h(y_{i,m}|H_1)
\]

(35)

where \(\Phi_{(j)}^{(i,m)} \) and \(\Phi_{(j+1)}^{(i,m)} \) denote the non-zero entries of the \(m \)-th row of \(\Phi_i \) after \(j \) and \(j+1 \) iterations, respectively, and \(\mu \) denotes the step size. An approximation to the gradient term \(\nabla_{\Phi_{i,m}} h(y_{i,m}|H_1) \) is provided in the Appendix.

B. Adaptive Measurement Kernel Design

The method described in the previous subsection can be used to exploit the non-uniformity of the subband usage probabilities to obtain optimized compressive measurement kernels. While this may be of interest in some limited applications, the subband usage probabilities in most FHSS applications are uniform. Therefore, there may not be significant non-uniformity in the probabilities to exploit. However, the framework described above lays the foundation for adaptive compressive measurements. In this approach, the measurement kernels \(\Phi_{i,m} \) are designed adaptively. After each measurement, a posterior probability distribution of subband usage under the signal present assumption is calculated using all previous measurements, which is often non-uniform. These posterior probabilities are used to replace the Gaussian component weights \(w_l \) in the above framework and a new measurement kernel that will be used during the next observation interval is obtained. To calculate the posterior probabilities, prior probabilities obtained from the previous measurement periods and likelihood values computed using the measurements from the current measurement period are used.

V. RESULTS

Both theoretical analysis and simulations using practical FHSS signals were performed to evaluate and compare the detection performances of the systems discussed in the previous sections. These results are presented in this section.

A. Theoretical Detection Performance

We first compare the performances of the conventional detection system based on SSA and the compressive detection system with random measurement kernels. The theoretical FNR (i.e. probability of miss) calculated using the formulas derived earlier in this paper versus signal-to-noise ratio (SNR) is shown in Fig. 3. Here, the SNR is defined as:

\[
\text{SNR} = \frac{\sigma_z^2}{\sigma_n^2}.
\]

(36)

In addition to the SSA and the proposed compressive detection with random measurement kernels, a clairvoyant system with knowledge of the FHSS hopping sequence was also implemented as reference. The clairvoyant system used measurement
Fig. 3. Comparison of theoretical FHSS detection performances of different detection systems. \(\alpha \) is the relative scanning/measurement rate, i.e., the number of scanning intervals (the SSA based detection system) or observation intervals (compressive detection systems) per FHSS hopping period.

In Fig. 3, it is shown that the clairvoyant system, although unpractical, has the lowest probability of miss at all SNR and \(\alpha \) values and serves as a benchmark. It is also shown that the conventional detection system based on SSA suffers from an evident “floor” in its FNR at high SNR values, if the relative scanning rate is not high enough. This floor results from the non-zero probability that the scanning support of SSA misses the hopping frequency of the FHSS signal in those cases. It can also be observed that the compressive detection system with random measurement kernels has slightly higher FNR than the SSA based system at low SNR values due to the Noise Folding effect [52]. However, the compressive detection system does not suffer from the FNR “floor” problem as in the SSA based system and has a better performance than the SSA based system over a large range of SNR values.

B. Detection Performance from Simulations

A Monte-Carlo simulation study was also conducted to compare the performances of the SSA and the proposed compressive detection with random measurement kernels. The FNR versus SNR obtained in these simulations are shown in Fig. 4. The FHSS signals used in these simulations were similar to those specified by the Bluetooth standard [53]. Bluetooth signals are obtained by combining Gaussian frequency-shift keying modulation of binary symbols with FHSS. The standard specifies 79 channels with 1 MHz channel bandwidth distributed between 2.402 GHz and 2.480 GHz. In order to match the simulation setup to the theoretical analysis setup, we set \(N_b = 20 \). We specified 80 frequency channels and left the last channel unused. As a result, the number of frequency channels covered by a scanning subband was set to 4. Four symbol periods were taken as a scanning interval in the SSA based detection system and an observation interval in the compressive detection system. Therefore, the number of Nyquist samples in each scanning/observation interval was 320. Different \(\alpha \) values were obtained by varying the number of symbol periods per scanning/observation interval. The clairvoyant system with knowledge of the FHSS hopping sequence was also implemented as a reference. A whitening step was applied to the measurements in the SSA and clairvoyant systems to counter the correlation introduced by the non-ideal filters used in the simulations. In the compressive detection system, CR was set to 20 so that the number of measurements during an observation interval in the compressive detection system is equal to the number of measurements during a scanning interval in the SSA based detection system. The same thresholds used in theoretical analysis were used in these simulations so that the overall theoretical FPRs were 0.01. 10\(^6\) Monte-Carlo simulations were performed to generate each point in the curves of Fig. 4.

In Fig. 4, we can see that the simulated performances of the clairvoyant and the compressive detection systems match well with the results obtained by theoretical analysis in Fig. 3. However, the FNR “floor” problem in the SSA based system is somewhat reduced in Fig. 4. This happens because of the usage of non-ideal filters in the practical simulations. With non-ideal filters, the signals outside the passband of the filters were not completely stopped. This unintentional leakage improves the detection performance of the SSA based detection system.
Fig. 4. Comparison of simulated FHSS Detection Performances of Different Detection Systems. α is the relative scanning/measurement rate, i.e., the number of scanning intervals (the SSA based detection system) or observation intervals (compressive detection systems) per FHSS hopping period.

Next, we evaluate the performance of the compressive detection system with optimized measurement kernels using Monte Carlo simulations. Here, we considered the static design case where the measurement kernels were optimized once and used throughout the measurement process. The FHSS signals used in these simulations were almost the same as those used above except that we set $N_b = 20$ when designing measurement kernels and the prior distribution of the subband occupation was no longer uniform but followed the distribution shown in Fig. 5. Similar to the experiments above, we set $CR = N_b$ for the compressive detection methods and the same thresholds used in theoretical analysis were used in these simulations so that the overall theoretical FPRs were 0.01. The clairvoyant system with knowledge of the FHSS hopping sequence was also implemented as reference. The results are shown in Fig. 6, where 10^6 Monte-Carlo simulations were performed to generate each point in the curves.

In Fig. 6, the detection performance of the compressive detection system with prior knowledge enhanced measurement kernels is superior to that of the compressive detection system with random measurement kernels when the relative observation rate α is low. This improvement can be several orders of magnitude decrease in FNR. However, when the relative observation rate α is high, the performance of the compressive detection
system with prior knowledge enhanced measurement kernels gets worse. Especially when $\alpha \geq N_0$, so that an FHSS hopping period covers the entire observation interval, the prior knowledge enhanced measurement kernels turn out to have worse performance than the random measurement kernels at high SNR values. This happens because as α increases, the spectra during the entire observation process becomes farther and farther away from that specified in Fig. 5. As a result, the support of the prior knowledge enhanced measurement kernels are more likely to miss the signal in these cases.

We also performed simulations using uniform prior subband usage distributions to design static measurement kernels. In this experiment, the measurement kernels were designed prior to the start of the measurement process and used throughout the measurement process. As expected, the detection performance obtained using these statically designed measurement kernels were the same as the performance of the random measurement kernels shown in Fig. 4.

The performance of the adaptive compressive detection approach was also evaluated using simulations. We compare the FNRS of the adaptive compressive detection approach to the compressive detection approach with random measurement kernels after each observation/scanning interval. The detection decisions were made at the end of each observation interval using all the measurements from the first observation interval to the current observation interval. In the adaptive measurement kernel design, we initialized the first row of the measurement kernel in the first observation interval $\Phi_{1,1}$ to be from the prior knowledge enhanced measurement kernel assuming uniform subband occupation, and designed the remaining measurement kernels following (34) and (35). We used almost the same setup of the FHSS signals as those used to obtain the results in Fig. 4 except that we set the relative observation rate $\alpha = 20$ so that the frequency channel of the FHSS signal did not hop during the entire observation process. Therefore, the posterior distribution of the subband occupation of the FHSS signals remained valid since no frequency hopping took place. Similar to the simulations with prior knowledge enhanced measurement kernels, we set $CR = N_0 = 20$. However, the distribution of the subband occupation in these simulations was taken to be uniform. SNR was fixed to -5 dB. The simulation results are shown in Fig. 7. In the figure, *Dwell Time* denotes the number of observation intervals and 20,000 Monte-Carlo simulations were performed to generate each point in the curves. The thresholds were determined by setting the overall FPR to 0.01 using the measurements that had already been made: the threshold at the *Dwell time* DT was got by solving (28), with (25) replaced with:

$$p(\lambda|H_1) = \frac{\lambda^{(M DT-1)}e^{-\frac{\lambda}{\sigma_\lambda^2}}}{\sigma_\lambda^{2MDT} \Gamma(M DT)},$$ \hspace{1cm} (37)

In Fig. 7, we can observe that the FNR of the adaptive compressive detection system decreases faster than the compressive detection system with random measurement kernels. Therefore, much fewer observation intervals are needed for the adaptive compressive detection system to achieve a particular FNR compared to the compressive detection system with random kernels.

Similarly, after a given number of observation intervals, the adaptive compressive detection system has much lower FNR than the compressive detection system with random measurement kernels, and the improvement can be several orders in magnitude.

VI. SUMMARY AND CONCLUSION

In this paper, we proposed methods for non-cooperative compressive detection of FHSS signals. We introduced the FHSS detection problem and provided a model to analyze the theoretical performance of conventional SSA-based detection systems. We then introduced a compressive detection approach that uses random measurement kernels. In addition to the compressive detection system with random measurement kernels, we also introduced compressive detection systems with designed measurement kernels and illustrated how the measurement kernels can be adapted during the measurement process. The proposed detection methods were evaluated using both theoretical analysis and simulations using practical FHSS signals. The experimental results illustrated that the compressive detection systems do not suffer from the FNR “floor” problem which is observed in SSA based systems when the relative scanning rate is low and the SNR is high. In addition, experimental results also illustrate that prior (or posterior) knowledge of signal distribution can be used to design measurement kernels which yield enhanced detection performance compared to random measurement kernels.

APPENDIX

DERIVATIONS OF THE COMPRESSION MEASUREMENT KERNEL DESIGN METHOD

In this Appendix, we provide the details of the derivations used to obtain (34) and (35). Recall that we modeled the FHSS signal by dividing the FHSS hopping range into N_0 subbands and modeling the distribution of the FHSS signal by a complex zero-mean Gaussian white signal within each subband. This MoG distribution was given in (33). Given this MoG signal model and zero-mean additive Gaussian white noise with variance σ_n^2, the distribution of the m^{th} measurement during the i^{th}
observation interval \(y_{i,m} \) is also an MoG distribution:

\[
f(y_{i,m}) = P_s \sum_{l=1}^{N_b} w_l f_l(y_{i,m}) + (1 - P_s) f_0(y_{i,m}) \tag{38}\]

where \(P_s \) denotes the probability of signal present

\[
f_0(y_{i,m}) = \mathcal{CN}(0, \sigma_n^2 \Phi_{i,m} \mathbf{I}_{CR} \Phi_{i,m}^\dagger) \tag{39}\]

denotes the distribution of \(y_{i,m} \) in the signal absent case, and

\[
f_l(y_{i,m}) = \mathcal{CN}(0, \Phi_{i,m} C_{\text{xx}}(l) \Phi_{i,m}^\dagger) \tag{40}\]

denotes the distribution of \(y_{i,m} \) when the \(l \)th subband is used in the signal present case with \(C_{\text{xx}}(l) = C_{\text{xx}}^{(l)} + \sigma_n^2 \mathbf{I}_{CR} \) and \(\mathbf{I}_{CR} \) denoting the \(CR \times CR \) identity matrix.

Given this distribution, we can compute the differential entropy:

\[
h(y_{i,m}) \approx - \int f(y_{i,m}) \log[f(y_{i,m})] dy_{i,m} \]

\[
= - \int \left(P_s \sum_{l=1}^{N_b} w_l f_l(y_{i,m}) + (1 - P_s) f_0(y_{i,m}) \right) \]

\[
\cdot \log \left[P_s \sum_{l=1}^{N_b} w_l f_l(y_{i,m}) + (1 - P_s) f_0(y_{i,m}) \right] dy_{i,m}. \tag{41}\]

Approximating the term \(\log[P_s \sum_{l=1}^{N_b} w_l f_l(y_{i,m}) + (1 - P_s) f_0(y_{i,m})] \) by the first two terms of its Taylor expansion at \(E[y_{i,m}] = 0 \), we get:

\[
\log \left[P_s \sum_{l=1}^{N_b} w_l f_l(y_{i,m}) + (1 - P_s) f_0(y_{i,m}) \right] \]

\[
= \log \left[P_s \sum_{l=1}^{N_b} w_l f_l(0) + (1 - P_s) f_0(0) \right] + \nabla_{y_{i,m}} \left[\log \left[P_s \sum_{l=1}^{N_b} w_l f_l(y_{i,m}) \right] + (1 - P_s) f_0(y_{i,m}) \right] + \text{H.O.T.} \]

\[
\approx \log \left[P_s \sum_{l=1}^{N_b} w_l f_l(0) + (1 - P_s) f_0(0) \right] + G(0) \cdot y_{i,m} \tag{42}\]

where H.O.T. denotes the higher order terms in the Taylor expansion and \(G(0) = \nabla_{y_{i,m}} \left[\log \left[P_s \sum_{l=1}^{N_b} w_l f_l(y_{i,m}) \right] + (1 - P_s) f_0(y_{i,m}) \right] \big|_{y_{i,m}=0} \).

Substituting (42) into (41), we get:

\[
h(y_{i,m}) \approx - \int \left(P_s \sum_{l=1}^{N_b} w_l f_l(y_{i,m}) + (1 - P_s) f_0(y_{i,m}) \right) \]

\[
\cdot \log \left[P_s \sum_{l=1}^{N_b} w_l f_l(0) + (1 - P_s) f_0(0) \right] dy_{i,m} \]

\[
= - \log \left[P_s \sum_{l=1}^{N_b} w_l \right] \pi \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger + \sigma_n^2 \mathbf{I}_{CR} \Phi_{i,m}^\dagger \right). \tag{43}\]

Similarly, the differential entropy of \(y_{i,m} \) in the signal present case is calculated by:

\[
h(y_{i,m} | H_1) \approx - \log \left[\sum_{l=1}^{N_b} \frac{w_l}{\pi \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger \right)} \right]. \tag{44}\]

When the probability of signal present \(P_s \) is fixed and given the constraint that \(\Phi_{i,m} \) are normalized, the second term inside the summation in (43) is a constant. Therefore, maximizing the entropy \(h(y_{i,m}) \) is equivalent to maximizing the conditional entropy \(h(y_{i,m} | H_1) \).

To obtain the gradient \(\nabla_{\Phi_{i,m}} h(y_{i,m} | H_1) \), we use the chain rule for the derivatives:

\[
\nabla_{\Phi_{i,m}} h(y_{i,m} | H_1) \approx - \nabla_{\Phi_{i,m}} \left\{ -\log \left[\sum_{l=1}^{N_b} \frac{w_l}{\pi \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger \right)} \right] \right\} \]

\[
= - \sum_{l=1}^{N_b} w_l \pi^{-1} \nabla_{\Phi_{i,m}} \left\{ \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger \right)^{-1} \right\} \]

\[
= - \sum_{l=1}^{N_b} w_l \pi^{-1} \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger \right)^{-1} \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger \right)^{-2} \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger \right)^{-1} \]

\[
= - \sum_{l=1}^{N_b} w_l \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger \right)^{-2} \left(\Phi_{i,m} C_{\text{xx}}^{(l)} \Phi_{i,m}^\dagger \right)^{-1}. \tag{45}\]

REFERENCES

Feng Liu received the B.S. degree in electronic information science and technology from Nankai University, Tianjin, China, in 2008, and the Ph.D. degree in electrical and computer engineering from the University of Arizona, Tucson, AZ, USA, in 2015. He is currently a Postdoctoral Research Associate in the Department of Electrical and Computer Engineering, University of Arizona. His research interests include signal and image processing, communications, data compression, and medical imaging.

Michael W. Marcellin (S’81–M’87–SM’93–F’02) received the B.S. degree from San Diego State University, San Diego, CA, USA, in 1983, and the M.S. and Ph.D. degrees from Texas A&M University, College Station, TX, USA, in 1985 and 1987, respectively.

Since 1988, he has been with the University of Arizona, where he holds the title of Regents Professor of Electrical and Computer Engineering. He was a major contributor to JPEG2000. He is a coauthor of the book: JPEG2000: Image Compression Fundamentals, Standards and Practice (Kluwer, 2001) and wrote the compression specification that is currently used for the distribution and exhibition of digital cinema. He is a College of Engineering Faculty Fellow (Teaching), and a University of Arizona Honors Professor.

Prof. Marcellin is a Member of Tau Beta Pi and Eta Kappa Nu. He received the National Science Foundation Young Investigator Award, the IEEE Signal Processing Society Senior (Best Paper) Award, and teaching awards from NTU in 1990 and 2001, IEEE/Eta Kappa Nu Student Section in 1997, and the University of Arizona College of Engineering in 2000, 2010, 2013, 2015, and 2016. In 2003, he was named the San Diego State University Distinguished Engineering Alumnus.

Nathan A. Goodman (S’98–M’02–SM’07) received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of Kansas, Lawrence, KS, USA, in 1992, 1993, and 2002, respectively. From 1996 to 1998, he was an RF Systems Engineer for Texas Instruments, Dallas, TX, USA. From 1998 to 2002, he was a Graduate Research Assistant in the Radar Systems and Remote Sensing Laboratory, University of Kansas. From 2002 to 2011, he was a Faculty Member in the ECE Department, University of Arizona, Tucson, AZ, USA, and is now a Professor in the School of Electrical and Computer Engineering and the Director of Research for the Advanced Radar Research Center, University of Oklahoma, Norman, OK, USA.

He has served as a Technical Cochair for the 2011 IEEE Radar Conference, a Finance Chair for the 2012 SAM Workshop, and an Associate Editor-in-Chief for the Elsevier's Digital Signal Processing journal. He is currently an Associate Editor for IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS and a General Cochair for the 2018 IEEE Radar Conference. He also serves as a Cochairs for the NATO SETS-277 research task group on cognitive radar, a Lecturer for the SETS-216 lecture series on Cognition and Radar Sensing, and as a Member of the IEEE AES Radar Systems Panel. His research interests include radar and array signal processing. He received the Madison A. and Lila Self Graduate Fellowship from the University of Kansas in 1998. He also received the IEEE 2001 International Geoscience and Remote Sensing Symposium Interactive Session Prize Paper Award.

Ali Bilgin (S’94–M’03–SM’08) received the B.S. degree in electronics and telecommunications engineering from Istanbul Technical University, Istanbul, Turkey, in 1992, the M.S. degree in electrical engineering from San Diego State University, San Diego, CA, USA, in 1995, and the Ph.D. degree in electrical engineering from the University of Arizona, Tucson, AZ, USA, in 2002. He is currently an Associate Professor in the Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Medical Imaging, University of Arizona. He has authored or coauthored more than 175 research papers in international journals and conferences. He holds ten granted and several pending patents. He was on the Organizing Committees of many conferences, an Associate Editor of the IEEE SIGNAL PROCESSING LETTERS from 2010 to 2012, and the IEEE TRANSACTIONS ON IMAGE PROCESSING from 2010 to 2014. He is currently an Associate Editor of the IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING. His research interests include signal and image processing, image and video coding, data compression, and magnetic resonance imaging.