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Abstract— In this paper, a compact, transportable, and dual-
polarization X-band weather radar was developed at the
Advanced Radar Research Center of the University of Oklahoma.
The radar was designed using a software-defined radio (SDR)
approach for waveform versatility. One of the key innovations in
this paper is the combination of SDR design and the mitigation
of blind range, which is inherent in pulse compression radars,
using a time–frequency multiplexed waveform while compression
is performed in pure software architecture. Internally, this radar
has been referred to as the PX-1000. It is primarily used as a
platform for waveform studies and various signal processing tech-
niques, such as pulse compression, polarimetric signal processing,
refractivity retrieval, and support of various field campaigns.
The radar system has been completed and is operational. It
has two identical and independent power amplifiers, one for
each polarization. The system also features a 1.2-m parabolic
reflector dish with dual-polarization feed, which provides a 1.8°
beamwidth. A majority of the components are housed above the
turntable of an azimuth-over-elevation pedestal. We also took
this opportunity to design and develop a new software suite that
includes signal processing, system control, and graphical user
interface. The raw I/Q time series can be recorded and streamed
out of the radar system in real time. In this paper, a detailed
description of the radar and some experimental data will be
presented.

Index Terms— Chirp modulation, Doppler radar, multiplexing,
signal design, signal processing.

I. INTRODUCTION

MANY X-band weather systems have recently gained
popularity as they are relatively smaller in size, light-

weight, transportable, and work well for short range data col-
lections [1]–[3]. Examples of such systems include the CASA
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IP-1 network [3], X-Pol from the University of Massachusetts-
Amherst (UMass) [4], NO-XP from the National Severe
Storms Laboratory [5], and Doppler on Wheels (DOW) and
Rapid DOW from the Center for Weather Research [6], [7],
just to name a few. As the operating wavelength becomes
shorter, compared with wavelengths in the S and C bands,
smaller particles can be detected [8] providing additional
details on the microphysics of storms.

For close range, a radar can still produce high spatial
resolution observations even at a 2◦-beamwidth, which is
important for rapidly evolving events, such as tornado gen-
esis [9]. Such applications have been accomplished, for
example, using the UMass X-Pol and the MWR-05XP from
the Center for Interdisciplinary Remotely-Piloted Aircraft
Studies [10]. Funded by the National Science Foundation, a
mobile X-band radar that is capable of performing a complete
sweep in just 2 s has recently been developed by the Pro-
Sensing, which has been referred to as the Rapid X-band
Polarimetric radar [11], [12].

Because of their transportability, mobile weather radars have
been used in a number of occasions for storm capture field
campaigns. The largest campaign to date is the Verification
of the Origins of Rotation in Tornadoes Experiment, Part 2,
where 10 mobile radars were deployed to capture radar data of
tornado events [5], [13]–[15]. As the project name suggests,
the primary objective was to understand tornadoes. Mobile
radars are a good choice as they can be quickly relocated to
areas where the tornadoes are most likely to occur. Mobile
facilities can also be used to reach out to people who may
not have access to radars for educations, such as the Shared
Mobile Atmospheric Radar for Teaching and Research [16].

Of course, X-band weather radars have several challenges.
One of them is the significant attenuation effects through
storms, which is problematic for quantitative precipitation
estimation [17]. While reflectivity calibration has always been
a challenge for weather radars [18], recent work in polarimetry
has shown significant promise to mitigate attenuation correc-
tion [19]–[22].

Most existing X-band weather radars are magnetron-based
in which techniques such as phase coding for range unfolding
and pulse compression are not possible. In this project, a solid-
state, software-defined, configurable coherent radar system is
developed at the Advanced Radar Research Center (ARRC)
of the University of Oklahoma (OU). Internally, this radar has
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been referred to as the PX-1000. The key idea was conceived
in the year of 2008, in which the last two digits 08 in binary are
represented as 1000. We envisioned the radar to be used as a
testbed for waveform studies as well as various signal process-
ing techniques, such as pulse compression, polarimetric signal
processing, refractivity retrieval, and supplemental validation
for experiment campaigns. The concept of pulse compression
radar is not new at all. Numerous concepts and demonstrations
have been presented in the literature, (See [23]-–[27]), but its
application to weather observation is still limited [28] and that
was one of the primary motivations for this paper.

The PX-1000 system has been completed and has been
operational since mid-2012. Some data will be presented in
this paper. As mentioned in the abstract, the radar is designed
using a software-defined radio approach for system versatility,
where many of the analog components such as mixers, filters,
and modulators are implemented in the digital transceiver
system as software [29]–[32]. One of the key differences
between this system and other X-band systems is the dual-
channel digital transceiver integrated in the radar system with
independent transmit and receive chains, i.e., independent up-
down converters and power amplifiers.

The rest of this paper is organized as follows. First, the
waveform versatility of the PX-1000 and the time–frequency
multiplexed (TFM) waveform for blind range mitigation will
be discussed in Section II. Then, an overview of system
hardwave and software will be presented in Section III.
Experimental results will be delivered in Section IV and finally
our future work will be presented in Section V.

II. WAVEFORM VERSATILITY

A software-defined radar with a digital transceiver and solid-
state amplifiers provides the versatility of using arbitrary wave-
forms. While Klystron amplifiers also provide this flexibility,
they are generally more expensive. Solid-state and Traveling
Wave Tube, amplifiers both offer the same phase coherency
feature with peak powers that are lower than Klystrons with
solid-state power amplifiers available at lower costs [33].
Due to the low peak power output, the average power is
compensated by transmitting longer pulses, which reduces the
range resolution that is directly proportional to the pulse width.
It can, however, be recovered by using pulse compression
techniques [23], [28], [34]. One unique feature of the PX-
1000 is the twin independent transmit-receive chains, i.e., the
transmit waveforms for each channel can be different so that
various waveform configurations can be explored. For exam-
ple, one could potentially use a pair of waveforms (or codes)
that simultaneously achieve pulse compression and cross-
channel isolation enhancement [35], or a pair of waveforms
that equalize the channel response of the system independently.
With a digital transceiver, arbitrary digital samples can be used
in the digital-to-analog conversion to accomplish any desired
waveforms at intermediate frequencies (IF), such as subpulse
phase-coded waveforms, interpulse phase-coded waveforms,
and frequency-coded waveforms.

A. TFM Waveform

As mentioned earlier, to compensate the relatively low peak
power output of the transmitters, long pulse widths are used
to regain the radar sensitivity. Two major disadvantages of
doing so are the loss of range resolution and the blind range.
Even if the system is capable of sampling the signals during
the transmit duty cycle, the leak through transmit signal from
the circulator generally overwhelms the return signals and
causes the near-range signals to be unusable and, thus, the
radar is considered to be blind during that time. One mitigation
strategy involves interleaving a set of short and long pulses
at the pulse repetition time (PRT) interval, resulting in a
waveform switching transmission. An apparent disadvantage
of doing so is the loss of maximum unambiguous velocity
as the effective PRT for each waveform is increased by a
factor of two.

In this paper, we developed a TFM waveform to simulta-
neously accomplish pulse compression and mitigate the blind
range limitation. The key is to use a set of two waveforms
that are separated in frequency but multiplex them in time
to create a single pulse. That is, the waveform generator (of
the transceiver) considers the entire TFM waveform as one
pulse. The order of the subwaveform must be arranged from
the longest to the shortest since the entire transmit cycle
is considered to be blind. With the short pulse at the end,
one can think of it as another radar operating at a slightly
different frequency at a synchronized but delayed pulsing
scheme. As such, the blind range is now just the duration
of the short pulse, which is negligible, i.e., on the orders of
tens of meters. A similar approach has been proposed by [36]
using frequency diversified waveform and simulated results
using radar moment data were presented. Fig. 1 shows the
instantaneous frequency function and the multiplexing scheme
of the waveform. One can think of it as a time concatenation of
two waveforms that occupy different frequency bands. In this
paper, the optimization of each waveform is not considered but
it is one of the current research topics and will be presented in
a separate study. Similar to a conventional rectangular pulse,
the waveform generator produces a complete TFM waveform
when it receives a trigger signal. This method is different
from the waveform interleaving method, i.e., TFM waveform
does not suffer the loss of effective PRT. In fact, staggered
PRT method can be implemented more easily using the TFM
waveform compared with the interleaving method. In addition,
TFM can be expanded to be a multiplex of three or four
waveforms. The expansion is straightforward and for the sake
of simplicity, the following discussion focuses on a two-
waveform configuration. Fig. 2 shows a measured waveform
and its performance through the radar system.

At the receiver, the waveform is decoded into two parts.
The fundamental idea is to apply match filtering twice to the
time series. One uses the long waveform, while the other
uses the short waveform as the matched filter. The pulse
compression algorithm is implemented in the Fourier domain
for computational efficiency by exploiting the mathematical
property that a matched filtering is essentially a convolution in
the time domain of the input signal x[n] with a time-reversed
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Fig. 1. Frequency function of the TFM waveform (top) and its theoretical
baseband I/Q samples (middle). The compressed response represents the auto-
correlation of each subwaveform, denoted W1 for the long waveform, W2 for
the short waveform, and X for their cross-correlation (bottom).

Fig. 2. Measured TFM waveform through the coupler at the transmitter (top)
and its performance (bottom).

complex conjugate of the transmit waveform t[n], denoted as
t∗[−n], which is equivalent to a multiplication of their coun-
terparts in the Fourier domain. The compressed signal y[n]
is obtained by applying the inverse Fourier transform to the
result of the multiplication. This technique is fairly common
in High-Performance Embedded Computing for signal filtering
using long filters [37]. Mathematically, it can be described as
follows:

y[n] = x[n] ∗ t∗[−n] ↔ X( jω)T(− jω) (1)

↔ X( jω)T∗( jω) (2)

where X ( jω) and T ( jω) represent the Fourier transform of
the input signal and waveform signal, respectively. In the
PX-1000 radar, the waveform signal is obtained from a coupler
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Fig. 3. System block diagram of the PX-1000. Each polarization channel is
independent of each other allowing distinct waveforms to be used.

in between the transmitter and circulator. A fast switch is used
to route the transmit signal through the receive path to provide
a sample of the transmit waveform, then immediately switch to
receive from the antenna at each pulse. For the TFM waveform
with two subwaveforms w1[n] and w2[n], the process in
(2) is repeated for each subwaveform and their correspond-
ing compressed signals are combined to produce the final
compressed signal y[n], which is subsequently used for radar
product calculations. Note from (2) that the template need not
be time-reversed, a complex conjugate operator (negate the
imaginary component) can be used to reduce the amount of
computations. The complete process of matched filtering and
waveform demultiplexing is summarized as follows.

1) Compute the zero-padded fast Fourier transform (FFT)
of the data, X( jω), and the filters, W1( jω) and W2( jω).

2) Compute Y1( jω), the product of X( jω) and W1
∗( jω).

3) Compute y1[n], the inverse Fourier transform of Y1( jω).
4) Compute Y2( jω), the product of X( jω) and W2

∗( jω).
5) Compute y2[n], the inverse Fourier transform of Y2( jω).
6) Generate y[n] by choosing in between y1[n] and y2[n]

for the appropriate range gates.

B. Computation Efficiency

The overhead to implement the matched filtering process
in the Fourier domain is, of course, the Fourier transforms.
Such processing is only worthwhile when the filter length is
long, which is precisely the case here for pulse compression.
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Fig. 4. Photographs of the finished system (top) and the fully assembled
trailer in a field experiment (bottom).

TABLE I

SYSTEM CHARACTERISTICS OF THE PX-1000

Otherwise, a cross-correlation function would be a more
straightforward implementation. For the PX-1000, the raw data
are processed on a conventional PC with an x86 CPU (e.g.,
Intel Core i5 2.4 GHz) using the FFTW3 library [38]. To show
the computational requirements of these two methods, consider
this example: a pulse that is collected with 2000 gates and
a filter length of 350 samples. For a radar gate spacing of
30 m, they correspond to 60 km range and 10.5 km pulse
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Fig. 5. Radar sensitivity of the PX-1000. The radar is suitable for
precipitation measurements, i.e., reflectivity of 20 dBZ and above.

Fig. 6. Here are some screenshots of the radar GUI. Top window is the
AScope display, middle left window is a product display, middle right window
is the main control interface, bottom left window is a power profile display,
and bottom right is a screenshot of installation procedure.

width, which are typical parameters for the PX-1000 during
operations. We will use the number of floating point operation
(FLOP) to quantitatively illustrate the point.

Each complex multiply consumes six FLOPs. One can read-
ily see that the cross-correlation method would require 700 000
(350 samples for each range gate for 2000 gates) complex
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Fig. 7. Base moment data and polarimetric variables collected using the PX-1000 on 2012-06-03 08:20 UTC. From left to right, the top panels show
reflectivity, Doppler velocity and spectrum width, the bottom panels show differential reflectivity, differential phase and correlation coefficient.

multiplications (six FLOPs) and 700 000 complex additions
(two FLOPs), which summed up to be 56 MegaFLOPs per
pulse. If the radar is operating at pulse repetition frequency
(PRF) of 1000 Hz, the computational requirement would be
56 GigaFLOP (GFLOPS)/s, which is a demanding requirement
even for modern CPUs. The actual computation requirements
would also need to factor in overhead for data transports and
loop counting but in the realm of this discussion, we will
neglect this overhead as it is similar for both methods. For
the Fourier domain implementation, the computational costs
of the FFT would need to be considered for a fair compar-
ison. In practice, a radix-2, zero-padded, N-length complex
FFT requires approximately 5N log(N) FLOPS [39]. For
N = 2048, that is 112 640 FLOPs. The whole process of filter-
ing requires three FFT operations, i.e., one for the pulse data,
one for the waveform template, and one for the inverse of the
result. Together with N complex multiplications and additions
in the Fourier domain, the whole process consumes 354 304
FLOPs. At the same PRF, it requires only 0.35 GFLOPS,
which is only a small fraction of the computation requirement
for the cross-correlation method.

III. HARDWARE AND SOFTWARE

A system block diagram of the PX-1000 is depicted in
Fig. 3. The operating frequency of the radar is selected to

be at 9550 MHz as a result of using the IF at 50 MHz
and a two-stage up–down conversion (UDC) process with
local oscillator (LO) frequencies at 800 MHz and 8800 MHz.
These LO frequencies are integer multiples of the 80 MHz
reference signal. Using this two-stage UDC architecture, we
can eliminate the need for extremely narrow-band bandpass
filters at X-band, which is difficult to fabricate. A majority
of the analog signal components, transceiver, and main host
for the signal processing are housed above the turntable
of the pedestal, immediately behind the dish. An in-house
trigger generator assembly was designed and developed, which
produces a set of synchronized trigger signals that are used
throughout the system. Fig. 4 shows a picture of the complete
radar and the entire trailer unit during a field experiment.
Within the housing at each arm of the pedestal, there is
a Rack Unit enclosure housing the UDC systems. One of
the UDC boxes houses the master oscillator where the 80-
MHz reference signal is generated. The reference signal is
distributed throughout the system. The system characteristics
of the PX-1000 are summarized in Table I.

With a 100-W transmitter and TFM waveform described
in Section II-A, the radar sensitivity of up to 60-km range
can be derived mathematically using the radar equation and
is shown in Fig. 5. At this sensitivity, the radar is capable of
capturing most echoes from typical precipitations, i.e., 20 dBZ
and above.
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Fig. 8. Reflectivity maps from the PX-1000 (top) and the KTLX (bottom), an
operational WSR-88D radar. Signal attenuation through rain in the data from
the PX-1000 is evident but in the scope of this paper, the rain attenuation is
not corrected. Most moderate to heavy rainfall signals are all captured within
60 km. Signal extinctions are as expected through heavy rainfall.

Software development is also another major effort in this
paper. We took the opportunity to design and develop a
new suite of software for data acquisition, signal processing,
system controls, communication, and user interface. With the
complete ownership of the software sources, various levels of
the software architecture is directly accessible, which provides
us the absolute freedom to modify and engineer the system.
Take the time-series filtering and demultiplexing of the TFM
waveform for example, it is only possible with complete access
to the raw data and the data feeding mechanism during the
demultiplexing process. That is, the raw data have to be
ingested to the pulse-compression module and the compressed
pulse needs to be fed to the subsequent radar product generator
with minimal overhead, as this process is repeated at every
pulse. Other than the hardware-related components, the signal
processing portion of the software was developed with no
propriety framework dependency for portability. It is coded in
plain C language, which can be easily migrated and applied
to various operating systems.

The transceiver and pedestal components of the software
rely on their vendors’ Application Programming Interface for

hardware interactions. They are, however, developed to be
standalone and are loosely coupled with the rest of the soft-
ware components. That is, only high-level message exchange
for instructions and feedback keep them connected, if needed.
Otherwise, they would function as standalone applications.
At the transceiver, once the angular reading and time-series
are combined, the radar data transmission is accomplished with
our newly developed framework that can be applied to other
systems, with moderate engineering, to facilitate tasks such as
offline data playback or time-series data ingest from another
radar.

A suite of software for the graphical user interface (GUI)
to control the radar was also developed. We chose to develop
Mac OS X for the ease of installation, in which most Mac
users would be familiar with, i.e., a drag-and-drop process.
Internally, we referred it as the iRadar. Fig. 6 shows example
screenshots of iRadar including the main control interface,
A-scope and product viewer for live view of the datastream
and offline product inspections.

IV. EXPERIMENTAL RESULTS

Using the TFM waveform described in Section II, a data
set was collected on 2012-06-03 08:20 UTC when an event
of isolated storm cells approached Norman, Oklahoma. The
transmit waveform was setup to use a total of 69-μs pulse
width, with the long waveform occupying 67 μs and the fill
pulse occupying 2 μs. Fig. 7 shows a snapshot of the data set.
There are six panels in the figure, showing reflectivity in dBZ,
Doppler velocity in ms−1, spectrum width in ms−1, differential
reflectivity in dB, differential phase (φDP) in degrees (◦), and
normalized cross-pol coefficient (ρHV ). One can readily see
that there is no blind range in the data set. Besides filling the
blind range, using TFM waveform suffers no penalty in the
effective PRF. In this case, with a 2000 Hz PRF, the aliasing
velocity is 15 ms−1.

In general, all the base data and polarimetric variables
appear normal with the pulse compression technique as
expected, the radar suffers signal attenuation through rain
because of the radar wavelength in X-band. It can be seen
from the data that differential reflectivity and φDP exhibit
signatures of attenuation, which can be used for correction
using several existing techniques [21], [40]–[43]. Ignoring the
signal attenuation issue for the sake of validating the working
conditions of the radar, a snapshot of the reflectivity map from
a nearby operational WSR-88D radar, the KTLX, is shown in
Fig. 8 for comparison. One can see that the radar captures most
returns from moderate to heavy rainfall except regions where
signal extinction occurs through heavy rainfall, i.e., outer range
of the domain, especially in the northern and south-western
regions.

Fig. 9 shows a close-up view near the transition range
at approximately 10 km, annotated by the dashed-line ring.
Without the use of the TFM waveform, data in this range
would not be available. For short-range radars that are targeted
to cover 40–60 km range, this represents a significant blind
range if no mitigation procedure is done. As mentioned earlier,
a simple remedy would be to use an interleaving pulse scheme
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Fig. 9. Close-up view of reflectivity (top) and correlation coefficient (bottom)
near the transition range at approximately 10 km. Sensitivity gain from the
short pulse to long pulse is as expected. Without the use of a fill pulse in
TFM, data within this range would not be available. Contour line is shown
moderate to heavy rainfall (Z ≥ 25 dBZ) and it can be seen that transition
from short to long waveform in this region is smooth and seamless.

that alternate between short and long pulses to scan for the
short and long ranges but the TFM waveform can also be
used to rectify this situation. The advantage of the later is that
there is no loss of effective PRF for each waveform, which
maintains the aliasing velocity. This is especially important
for X-band radars as Doppler velocity fields are commonly
aliased. Unfolding the velocity field can still be accomplished
but would become even more challenging for a multiple-time
aliased field.

By inspecting reflectivity data near the transition range, one
can observe the sensitivity gain from short waveform to long
waveform. The transition in the merged data derived from
the two demultiplexed waveform is evident, shown by the
blue shades (reflectivity in between 10 and 20 dBZ) which is
an indication that the long waveform is sufficiently sensitive
to detect drizzle and very light rain. While the reflectivity
factor can be calibrated to have reflectivity values derived from
both waveforms match, the underlying signal-to-noise ratio is
actually very low for the short waveform, near the transition
range. The effect is manifested into lower ρHV values, as seen
in the second panel of Fig. 9. One way around this is by using

a TFM waveform that is a multiplex of more subwaveforms
to obtain a more subtle transition. This would require wider
hardware bandwidth, which is currently not available with
the PX-1000 but this result has demonstrated the ability to
recover blind range using a TFM waveform for transmit and
a demultiplexing mechanism.

In addition to ρHV , ZDR, and φDP also exhibit discontinu-
ities in the transition range. We are convinced that all moment
data inherit some degrees of bias. An obvious culprit would
be the integration effects through the sidelobes, which can be
seen from the compressed response of the waveform. Note the
asymmetrical interference levels between the long and short
subwaveform in Fig. 1 at different ranges. Such inteference
means a bias from the other subwaveform is introduced, which
is also a function of the signal strength at different range where
the sidelobes reside. Therefore, a low integrated sidelobe level
is desired.

V. CONCLUSION

With a flexible waveform generator in the PX-1000, there
is a parallel effort at OU-ARRC to investigate and develop
minimally-tapered waveforms for pulse compression. The
main goal is to maximize the radar sensitivity and power
efficiency using an optimization algorithm. In addition, we will
also investigate various waveform designs for pulse compres-
sion and waveform-coding techniques to seek the possibilities
of improving the system performance.

Recent signal processing techniques such as multilag signal
processing for enhancing polarimetric measurements [44],
radar refractivity retrieval [45], [46], and ground clutter fil-
tering will be incorporated into the system in the near future.

We are also currently investigating the possibility of inte-
grating PX-1000 into CASA network [3] in Dallas–Fort Worth
for field campaigns given that PX-1000 and the CASA radars
share many system specifications.
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