
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 4, APRIL 2017 2299

Bootstrap Dual-Polarimetric Spectral
Density Estimator

Arturo Y. Umeyama, Student Member, IEEE, Sebastián M. Torres, Senior Member, IEEE,
and Boon Leng Cheong

Abstract— Weather radar variables provide useful information
about the characteristics and motion of hydrometeors. However,
the bulk information may be masked, when the meteorolog-
ical signal of interest is contaminated by clutter. The dual-
polarimetric spectral densities (DPSDs) may unveil additional
information about the polarimetric characteristics of the groups
of scatterers moving at different Doppler velocities in a given
radar resolution volume. Previous DPSD estimation methods
required averaging a large number of spectra (obtained from
different spatial locations or times), or averaging in frequency
to get accurate estimates; though by doing so, the resolution
is degraded, and the important features of the meteorological
phenomenon may be masked. In an attempt to overcome these
limitations, the Bootstrap DPSD estimator is proposed, which
allows the estimation of DPSDs from a single dwell with minimal
spatial, temporal, or spectral resolution loss. The performance
and the limitations of the Bootstrap and conventional DPSD
estimators are assessed when identifying signals with different
polarimetric signatures of scatterers moving at different radial
velocities in the radar volume. The advantages of the Bootstrap
DPSD estimator as a tool for the polarimetric spectral analysis
are demonstrated with a few examples of polarimetric spectral
signatures in data from tornado cases. It is expected that, with
the Bootstrap DPSD and the polarimetric spectral analysis, it
will be possible to better understand tornado dynamics and their
connection to weather radar measurements, as well as to elucidate
important scientific questions that motivated this paper.

Index Terms— Bootstrap, polarimetric spectral density,
spectral estimation, weather radar.

I. INTRODUCTION

IT IS known that the tornadoes are one of the greatest
weather-related threats to life and property in the U.S.

Violent winds and airborne debris in tornadoes are respon-
sible for injuries and fatalities [1], and can also inflict
major structural damage [2] exceeding billions of dollars
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in costs [3]. More knowledge about tornadoes would make
possible the mitigation of such devastating consequences.
However, tornado mechanics are still not completely under-
stood [4]. Weather radars are essential in tornado studies,
since they allow the retrieval of information in a way that
would otherwise be extremely difficult and dangerous [5].
Moreover, with polarimetric radars, more accurate discrim-
ination of meteorological and nonmeteorological scatterers
within the radar resolution volume is possible [6]. Since the
polarimetric signatures of debris lofted by tornadoes depend on
their electrical size, shape, orientation, and concentration [7],
they can be noticeably different from those of hydrometeors
and can be used for enhanced tornado detection [8]. These
tornadic debris signatures (TDSs) are tornado-scale polarimet-
ric signatures with distinctive characteristics collocated with a
tornado vortex, visible in radar observations after a tornado is
lofting debris to the level of the radar beam [9], and are related
to the ejection and centrifuging of hydrometeors and debris by
the cyclone [10]. Additionally, they are the clear indicators of
tornadoes, when ground observation is limited or impossible
(e.g., at night or during heavy rainfall) [11].

In the recent years, TDSs have been used in different
applications, e.g., improving the warning decision-making
process, assessing a potential tornado threat [12], [13], enhanc-
ing the confidence of tornado detection [14], and assess-
ing tornado damage potential and intensity [15]. Several
studies [8], [16], [17] have shown the evidence of negative
differential reflectivity (ZDR) values in TDS from different
tornado cases, suggesting a possible common alignment of
the debris within the tornadic vortex, or a scattering in the
Mie regime due to large debris. However, it is still unknown
exactly how the characteristics of different debris types affect
the different polarimetric variables. Furthermore, centrifuging
effects cause hydrometeors and debris to move at slightly
different velocities within a tornado vortex, and since Doppler
radars measure the motion of the scatterers rather than the
actual wind speed, significant biases can be introduced in
the wind radar measurements [10]. This is especially true
for the TDS, where the debris is the dominant scatterers in
the radar resolution volume [8]. Hypothetically, this error
in measurement could be corrected if the velocity of the
debris was known and could be separated from the velocity
of hydrometeors, which passively trace the wind. Since the
radar variables are computed by averaging the contribution of
all scatterers within a radar resolution volume, an alternative
way to retrieve the velocities must be employed, which can
be achieved through the spectral analysis.
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The power spectral density (PSD) of weather radar signals
is the power-weighted distribution of the radial velocities of
the scatterers in a radar resolution volume [18]. Reference [19]
found that approximately 75% of the spectra observed with a
radar from precipitation at close ranges were Gaussian. For
the other 25% of the cases with non-Gaussian spectra, the
spectral analysis can provide important information about the
distribution of radial velocities in the radar resolution volume,
and it was found in [20] that many tornado spectra exhibit non-
Gaussian distributions of Doppler velocities. Moreover, in the
cases with more than one signal, e.g., a weather signal with
nonzero mean radial velocity mixed with ground clutter, the
spectra will show the distribution of both signals as a function
of Doppler velocity with peaks corresponding to each type of
scatterer, where the spectrum of the ground clutter signal is
centered about zero and the spectrum of the weather signal
can occupy any Doppler-velocity band [18]. Provided that the
weather signal does not have a near-zero mean radial velocity
and a narrow spectrum width, and the ground clutter can be
filtered from the spectrum without significantly corrupting the
weather signal [21]. In the cases where the signals overlap in
the spectrum, techniques have been developed to mitigate the
clutter influence and reconstruct the weather signal to provide
better radar estimates [22], [23]. However, it is difficult to
discriminate the nature of the nonstatic scatterers contained
in the spectrum, since the peaks in a PSD do not contain
any information other than the power returns and their radial
velocity.

Additional spectral information can be gathered from the
dual-polarimetric spectral densities (DPSDs) [24]. The DPSD
depicts the polarimetric characteristics of scatterers moving at
different Doppler velocities within a radar resolution volume.
These tools for the polarimetric spectral analysis provide
three additional spectral variables: the spectral differential
reflectivity (s ZDR), the spectral correlation coefficient (sρHV),
and the spectral differential phase (sφDP). It is hypothesized
that the discrimination of scatterer groups would be possible
by correlating the DPSD values of unknown scatterers to
those corresponding to different scatterer types with known
polarimetric characteristics.

Previous works involving DPSDs have employed differ-
ent methods for their estimation in different applications.
Some works [24]–[26] have dealt with the spectral classi-
fication of scatterers to identify nonmeteorological targets,
using range-averaged DPSDs. In [27], improved measure-
ments of atmospheric returns were found using scan-to-scan-
averaged DPSDs. Others [28]–[33] studied the microphysics
and dynamics of different weather events using DPSDs
estimated by averaging different scans and independent
simulated spectra. Additionally, [34] studied the statistical
quality of the spectral polarimetric variables, showing that
20 independent observations are needed to ensure optimal
quality.

The main constraint in achieving desirable error levels
to perform polarimetric spectral analyses for tornado
observations is the limited amount of independent observations
available. Multiple-dwell DPSD estimates account for this
limitation by averaging spectra from adjacent azimuthal or

radial locations and different scans, or even by smoothing the
spectral estimates, but they ultimately end up reducing the
spatial, temporal, and/or spectral resolution. Since tornadoes
are events that evolve rapidly in time, in a relatively small
spatial extent and with different scatterers contained within the
tornadic vortex [15], it is critical to preserve the best resolution
possible in all dimensions, thus the methods in the previous
literature are not well suited.

In this paper, the Bootstrap DPSD estimator is presented,
which accounts for the aforementioned limitations and com-
putes the DPSD using only one dwell and resulting in minimal
resolution loss. In Section II, several methods to estimate the
spectral variables are presented, and an assessment of the
advantages and limitations of the DPSD estimation methods is
included. A description of the key aspects and considerations
taken in the design of the Bootstrap DPSD estimator is
presented in Section III. Thorough analyses of the performance
of the Bootstrap DPSD estimator under different scenarios are
presented in Section IV. Section V shows the results of using
the Bootstrap DPSD estimator on data sets of a real weather
event. Finally, concluding remarks and recommendations for
the future work are presented in Section VI.

II. SPECTRAL ESTIMATION METHODS

A. PSD Estimators

For PSD estimation, there are nonparametric and paramet-
ric methods. The former type makes no assumptions about
the structure of the underlying phenomena, while the latter
assumes that their structure can be modeled. Because the
atmosphere is constantly changing, it is extremely difficult to
parameterize a model for each case. Therefore, nonparametric
methods are better suited for this paper.

1) Periodogram: One of the most common nonparametric
methods to compute the PSD is the periodogram because of its
relative simplicity and low computational cost. This method
consists in applying the discrete Fourier transform (DFT) to
the windowed I/Q time-series signal to obtain

ZH,V(k) =
M−1∑
m=0

d(m)VH,V(m)e− j2πmk/M (1)

where the signal VH,V(m) corresponds to either the
horizontal (H ) or vertical (V ) channel, and d(m) is the
power-normalized data windowing function used to contain
spectral leakage [35]. Then, the estimates of the H -, V -, and
cross-spectrum PSDs can be obtained as

s ŜH,V(k) = |ZH,V(k)|2
M

(2)

and

s ŜX(k) = ZH(k)Z∗
V(k)

M
(3)

where M is the total number of samples in the dwell and k is
the spectral index (0 ≤ k < M). In spite of its advantages,
the periodogram comes with limitations regarding the accuracy
and precision of the PSD estimates. Many variants of the
periodogram have been proposed in the literature to address
these issues, some of which are described next.
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2) Welch’s Method: The method proposed by Welch [36]
consists in dividing the time series into overlapping segments.
The PSD of each segment is computed with the periodogram,
and these partial estimates are then averaged to reduce the
variance of the spectral estimates [37]. The PSD estimate of
a single dwell with Welch’s method is obtained as follows:

Zi (k) =
L−1∑
m=0

d(m)V [m + i(L − O)]e− j2πmk/L (4)

s Ŝi (k) = |Zi (k)|2
L

(5)

s Ŝ(k) = 1

Q

Q−1∑
i=0

s Ŝi (k) (6)

for m = 0, . . . , L −1; k = 0, . . . , L −1; and i = 0, . . . , Q−1,
where Q = � M−O

L−O � is the number of segments, O is the
amount of segment overlap, L is the segment length, and �·� is
the floor function. Here, the H , V , or X subscripts for the
PSDs have been omitted for simplicity, but it is important to
note that the general procedure is similar to (2) and (3).

Welch’s method produces smoother estimates, because the
PSDs of different segments are averaged. However, since
it reduces the number of samples to compute the partial
PSD estimates, the spectral resolution is degraded significantly,
although the variance is also reduced by a factor of Q
(without overlap). Furthermore, by allowing the overlap of
the time-series signal segments, the partial PSD estimates are
no longer independent even though the tapered windowing
function helps to decorrelate these estimates.

3) Daniell’s Method: The smoothed periodogram method
proposed by Daniell [38] reduces the variance of the estimate
in a different manner than with the methods described above.
In this method, a moving-average filter is applied to the “raw”
periodogram estimate [37]. To obtain the PSD estimate with
Daniell’s method, we first get an estimate using (1)–(3). Then,
a moving-average filter is applied as

s ŜH,V,X(k) = 1

2 p + 1

〈k+p〉M∑
k′=〈k−p〉M

s ŜH,V,X(k ′) (7)

where 2 p+1 is the length of the filter, and 〈·〉M is the modulo
M operator. Clearly, this method trades spectral resolution
for the reduction of variance, and it may lead to higher bias
as it smoothes the raw PSD. Additionally, when the spectral
components of the signals of interest are too close, the ability
to resolve them individually may be lost due to this smearing
effect.

B. DPSD Estimators

Estimates of the spectral polarimetric variables are obtained
in a similar way to the polarimetric radar variables, but using
the PSDs instead. The spectral differential reflectivity and the
spectral correlation coefficient can be obtained as

s ẐDR(k) =
∑K

i=1 s Ŝ(i)
H (k)∑K

i=1 s Ŝ(i)
V (k)

(8)

and

sρ̂HV(k) =
∣∣ ∑K

i=1 s Ŝ(i)
X (k)

∣∣√∑K
i=1 s Ŝ(i)

H (k)
∑K

i=1 s Ŝ(i)
V (k)

(9)

where K is the number of independent spectra that are
averaged to obtain useful DPSD estimates. In this paper, the
spectral differential phase will not be included, because it does
not convey as much information to discriminate hydrometeors
from debris.

Operational weather radars perform a scan every few
minutes, which yield one independent spectrum (K = 1)
for each radar resolution volume. Using the periodogram
estimator, for the spectral differential reflectivity, the spectral
components of the PSD have significantly large variance, pro-
viding a poor s ZDR estimate. Additionally, it can be shown that
the spectral correlation coefficient estimate fails to produce any
useful results. By combining (2), (3), and (9), for K = 1

sρ̂HV(k) = |s ŜX(k)|√
s ŜH(k)s ŜV(k)

= |ZH(k)Z∗
V(k)|√|ZH(k)|2|ZV(k)|2

= |ZH(k)||Z∗
V(k)|

|ZH(k)||ZV(k)| = 1 (10)

which shows how the sρHV estimate always equals 1. This lim-
itation can be overcome in different ways: either by using PSD
estimators that perform averaging (single-dwell estimates),
or by averaging PSDs from different sources, such as adjacent
radar resolution volumes in azimuth, range, or consecutive
scans.

1) Single-Dwell Estimators: Some of the PSD estimation
methods described in Section II.A can provide DPSD estimates
using data from a single dwell by reducing the statistical errors
through averaging in the frequency domain. To summarize
the PSD estimation methods, the periodogram estimates have
the best frequency resolution but no averaging of PSDs is
performed, and thus, it yields DPSD estimates with high bias
and variance. The Welch estimator averages the PSDs of
multiple segments with a variable frequency resolution that is,
at best, worse than that obtained with the periodogram. The
Daniell estimator averages multiple spectral coefficients and
may consequently affect the ability to resolve closely spaced
spectral components. Albeit useful in cases where no other
type of averaging can be performed, these methods degrade
the frequency resolution (Welch) or add additional spectral
“smearing” (Daniell).

2) Multiple-Dwell Estimators: As previously mentioned,
DPSDs can also be estimated by averaging PSDs from dif-
ferent sources, such as adjacent radar resolution volumes in
azimuth, range, or consecutive scans. The impact of averaging
in a particular dimension is assessed next.

a) Range averaging: More spectra may be acquired from
spatially correlated radar resolution volumes [24]–[26]. If the
range locations of a particular ray are chosen to be averaged,
the range resolution is degraded by at least a factor of two.
Depending on the range resolution of the radar, this could be
quite significant as important spatial features of the weather
phenomenon may be masked by averaging. On the other hand,
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since the range dimension of the resolution volume remains
constant while the resolution volume increases in size with
range due to the antenna beamwidth, and since range may
be oversampled, range averaging may be a less compromising
option in regard to resolution loss.

b) Azimuth averaging: A different spatial averaging can
be performed using independent spectra from adjacent radar
resolution volumes in azimuth. Similar to range averaging,
the azimuthal resolution is degraded at least by a factor of
two. At farther ranges, the radar resolution volume gets wider
in azimuth resulting in degraded spatial resolution, while
for a constant range, the resolution volumes will be similar
in size. Thus, averaging in azimuth may be favored over
range averaging at closer ranges. Additionally, if the azimuth
is oversampled or if signal processing techniques, such as
the superresolution [39], are used, the tradeoffs of azimuth
averaging may be acceptable.

c) Scan-to-scan averaging: Averaging spectra from con-
secutive scans can also be performed to obtain better
DPSD estimates, provided the spectra are somewhat corre-
lated in time (i.e., slow moving phenomena or short scan
times) [27]–[30]. By doing so, it must be ensured that the
observations are based on the same location in space for a
given event. However, to correctly capture the evolution of
certain weather events, such as tornadoes, the time between
consecutive scans for a given radar resolution volume must be
considerably short [40], [41].

III. BOOTSTRAP DPSD ESTIMATOR

As mentioned before, the quality of the DPSD estimates is
limited by the number of available independent observations.
The methods presented in Section II.B yield the estimates
of sufficient quality provided that the number of independent
measurements is large (larger than about 20). However, good
temporal and spatial resolutions are required to capture the
important features of tornadic storms, as well as a good spec-
tral resolution to discriminate the velocities of hydrometeors
and debris. For these reasons, it may be extremely difficult in
practice to obtain the required number of measurements and
to satisfy these constraints with currently available techniques
for DPSD estimation. The Bootstrap DPSD estimator is pre-
sented in this paper as an alternative method that overcomes
some of the limitations of the conventional PSD and DPSD
estimators.

It is well known that the bootstrap is a statistical method,
which consists of the random resampling with the replace-
ment of the observed data [42]–[46]. Briefly, the Bootstrap
DPSD estimator is the result of combining the bootstrap
method with the DPSD estimator using averaged periodogram
PSD estimates. The basic idea is to generate bootstrapped
pseudorealizations of the weather radar I/Q time-series sig-
nals, in order to construct a bootstrap aggregate of the PSD
estimated from the I/Q pseudorealizations from which a DPSD
estimate can be obtained. The signals of the H and V channels
are bootstrapped as a pair in order to preserve the cross
correlation between channels. Since the processes controlling
the I/Q time-series signals are correlated, the signals must be

conditioned prior to the generation of bootstrapped pseudore-
alizations, such that additional information can be extracted
from each signal without destroying the spectral information
and/or degrading the quality of the estimates. A block boot-
strap method [47] is employed to generate a suitable number
of pseudorealizations from which the PSDs are computed..
These are then averaged to obtain a DPSD estimate. Finally,
a bias correction technique is applied to obtain the Boot-
strap DPSD estimate. A block diagram of the conventional
and Bootstrap DPSD estimators is shown in Fig. 1. The
algorithm of the Bootstrap DPSD estimator is described
next.

A. Algorithm Description

1) Construct the Extended Time-Series Signal XH,V (m):
The purpose of an extended signal is to provide added variabil-
ity (for bootstrapping) while keeping the spectral characteris-
tics as close as possible to those of the original signal through
coherency corrections. To construct it, begin by concatenating
three instances of the signal V. Since this periodic extension
adds discontinuities that reduce the coherency of the signal,
corrections must be applied. That is, the left extension is back-
ward corrected and the right extension is forward corrected as

XH,V = {VL
H,V, VH,V, VR

H,V} (11)

where

VL
H,V = C−

X {VH,V(0), . . . , VH,V(M − 2)} (12)

VR
H,V = C+

X {VH,V(1), . . . , VH,V(M − 1)} (13)

and the correction factors C−
H,V and C+

H,V can be obtained as

C+
X = 1

2

[
VH(M − 1)

VH(0)
+ VV(M − 1)

VV(0)

]
(14)

and

C−
X = 1

2

[
VH(0)

VH(M − 1)
+ VV(0)

VV(M − 1)

]
. (15)

In the design of the coherency correction factors, the tradeoffs
of a few different schemes were studied [48]. The selected
correction factor was empirically found to have the best
error performance for different simulation parameters. Two
important design criteria that determined the selection of
these correction factors were the small amount of incoherency
added to the signal (reflected in the bias of sρ̂HV) and the
robustness in cases where the signals have differential phase
of approximately ±180◦. It should also be noted that the
extensions are of length M − 1 due to the fact that, with the
correction, the first (or last) element of a block is “matched” to
the last (or first) element of the adjacent block (i.e., there is a
duplicate sample on each extension of the signal). The length
of the extended signal then becomes M ′ = 3M−2, from which
the 2M − 1 blocks of length M can be drawn as bootstrap
samples. A pseudorealization obtained by resampling from this
set of blocks is still prone to spectral leakage, albeit lesser than
in the case where no coherency correction is applied.
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Fig. 1. Block diagram of the conventional and Bootstrap DPSD estimators.

2) Compute the Maximum Ratio of Corrected Samples rmax:
The second step attempts to further improve the quality of the
bootstrapped estimates with a careful selection of the blocks.
Pseudorealizations with more discontinuities (corrected or not)
are more likely to exhibit more spectral leakages due to the
loss of coherency. Hence, instead of using all the blocks of
the extended signal, it is possible to select the set of blocks
that contain more original samples than corrected samples.
The concept of the ratio of corrected samples in a block
(or pseudorealization) is introduced as

r = Mcorrected

M
(16)

where Mcorrected is the number of corrected samples in the
block. In this sense, the original sequence has a ratio r = 0,
while blocks beginning at samples M/2 and 3M/2 have a
ratio close to r = 0.5, and blocks beginning at samples 1
and 2M − 1 have a ratio close to r = 1. For example, by
establishing a threshold for blocks that have a maximum ratio
of r = 0.5, it can be guaranteed that all the blocks in the
reduced population will have at least 50% of the original
samples. Clearly, this strategy can additionally reduce the
spectral leakage by mitigating the incoherencies remaining in
the periodic extension of the original signal at the price of
reducing the number of permissible pseudorealizations. The
spectral leakage is reduced with this strategy mainly because
the data points near the discontinuities are deemphasized
by the window tails while more weight is placed on the
original samples. This is equivalent to applying a sliding data
window on a signal while allowing the signal to be periodically
extended. The ratio that maximizes the amount of information

depends on the data windowing function used in the analysis.
A good compromise between spectral leakage and statistical
errors is obtained by limiting the selection to blocks with a
maximum ratio of

rmax =
1 −

√
1
M

∑M−1
m=0

∣∣∣ d(m)
max d(m)

∣∣∣2

2
= 1 − √

α

2
(17)

where α is the mean power of the data windowing function,
and the amplitude

√
α/2 is related to the number of points

in the data window that contributes the most to the spectral
estimate. With this definition, r is bounded between 0.5, where
half of the samples are corrected, and 0, where none of
the samples are corrected. It can be easily seen that more
tapered windows lead to higher maximum ratio and vice versa.
In other words, the amplitude of the data windowing function
determines the number of corrected samples, as weighted by
the window, that can be present on either end of a sequence
before the spectral leakage becomes significant.

3) Bootstrap the Extended Signal: For the third step, the
conditioned signal is bootstrapped and a number of pseudore-
alizations are generated. The moving block bootstrap [49], [50]
is a dependent data bootstrap method that consists of dividing
the signal into overlapping blocks that are resampled with
replacement with equal probability. An implementation on
weather radar I/Q time-series signal is as follows. Let the set
of available blocks (with maximum ratio rmax) for resampling
from the extended signal be defined as

B = {B0, B1, . . . , BN ′−1} (18)
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where each block of length M is given by

B j = {XH,V( j), . . . , XH,V( j + M − 1)} (19)

for 0 ≤ j ≤ N ′ − 1, where N ′ = �2rmax(M − 1) + 1� is the
number of available blocks. An I/Q pseudorealization V′(i)

H,V is
obtained as

V′(i)
H,V = B j (i) (20)

for 0 ≤ i ≤ K ′ − 1, where K ′ is the number of pseudore-
alizations to be generated and j (i) is a uniformly distributed
random integer in the interval [0, N ′ − 1]. In other words,
the K ′ blocks of length M are drawn from the ratio-limited
extended signal.

An additional step is taken to correct the power of the
I/Q pseudorealizations. Since the coherency correction factors
scale both the magnitude and phase of corrected samples,
a power correction must be applied to preserve the power of
the original signal. Let P̂H,V be the estimated average power of
the H and V channels of the original signal, and P̂ ′

H,V be the
average power of the H and V channels of a pseudorealization.
The average power of each pseudorealization is matched to the
average power of the original signal; mathematically

V ′′
H,V(m) =

√√√√ P̂H,V

P̂ ′
H,V

V ′
H,V(m), 0 ≤ m < M (21)

so that

P̂ ′′
H,V = P̂H,V (22)

and the power of the original signal is preserved.
4) Compute the DPSDs: The next step of the algorithm

involves computing M-sample periodogram PSDs of the
pseudorealizations with (1)–(3), and averaging them to com-
pute the DPSDs with (8) and (9) (also with M spectral
components).

5) Apply Bias Correction to DPSDs: The final step involves
correcting the DPSD estimates for inherent biases. In general,
the expected value of the DPSD estimate and the true value
are related by

E[s Ẑdr(k)] = s Zdr(k) + bias[s Ẑdr](k) (23)

and

E[sρ̂HV(k)] = sρHV(k) + bias[sρ̂HV](k) (24)

where s Zdr is the spectral differential reflectivity expressed
in linear units (in decibel units and s ZDR = 10 log s Zdr).
The analytical expressions of the statistical errors of s ẐDR
and sρ̂HV were determined in [34]. The biases of the DPSD
depend on the number of independent spectra K , the spectral
SNR of the H and V channels, sSNRH,V, and the true spectral
correlation coefficient, sρHV. The bias expressions derived
from [34] are

bias[s Ẑdr](k)

s Ẑdr(k)
= 1

βK

[
1 − sρ̂2

HV(k)
]

(25)

and

bias[sρ̂HV](k)

sρ̂HV(k)
= 1

βK

{ [1 − sρ̂2
HV(k)]2

4sρ̂2
HV(k)

}
. (26)

The sSNR terms are neglected, because it is assumed that
the SNR of the signal of interest is high (more than 20 dB).
β is a factor that compensates for the fact that the bootstrapped
pseudorealizations are not independent, and it adjusts the esti-
mated DPSD such that the error between the DPSD estimate
and the true value is minimized. Given the complexity in
deriving an analytical expression for bootstrapped time series
with arbitrary distributions, β was determined empirically
by fitting the different values of r such that the error was
minimized for all K . The result is

β =
{

(1 − r)−3.3 − 2(1 − r)1.1, for K = 1

(1 − r)−4.5 − (1 − r)−2.1, for K > 1
(27)

where r is the maximum ratio defined by (17), and K is the
number of independent spectra. By replacing (25) and (26)
in (24), the following expressions are obtained:

s Z̃dr(k) = s Ẑdr(k)

{
1 − 1

βK
[1 − sρ̂2

HV(k)]
}

(28)

sρ̃HV(k) = sρ̂HV(k)

(
1 − 1

βK

{ [1 − sρ̂2
HV(k)]2

4sρ̂2
HV(k)

})
(29)

where the tilde denotes the bias-corrected estimate.

IV. PERFORMANCE OF THE BOOTSTRAP

DPSD ESTIMATOR

To properly demonstrate the advantages of the Bootstrap
DPSD estimator, its statistical performance under different
conditions is analyzed next. We consider single- and dual-
signal cases, and evaluate the Bootstrap DPSD estimator with
single or multiple dwells.

A. Methodology for Single-Signal Analysis

A dual-polarimetric extension of the weather-like signal
simulator in [51] is used to study the performance of the
estimators. Multiple realizations are produced to get K inde-
pendent spectra, and the statistical properties of the estimator
are computed using N iterations. This type of synthetic
simulation allows generation of virtually any desired signal
(or composite signal) under different scenarios, making it a
powerful tool to study the statistical properties of any esti-
mator. With this simulation procedure, the signal parameters
that have a potential impact on the quality of the spectral
estimates are SNR, M , σv , ZDR, ρHV, and K . Throughout this
section, the signal parameters are selected to resemble typical
observations. The SNR is arbitrarily set high (20 dB) such
that the noise contamination is minimal. While a Gaussian
assumption for the simulated signals may not be the most
realistic, it provides a simple model that can capture features
of the signal such that quantitative performance analyses can
be conducted.

The procedure to compute the statistical errors of the
estimates is explained in Appendix A. Assuming the signal
originates from a single group of uniform scatterers, for each
set of independent estimates (s ẐDR and sρ̂HV), the spectral
coefficients above an SNR threshold are used to compute the
average spectral errors. Herein, the bulk1 radar variables are

1The term ‘bulk’ will be used to simply refer to the conventional variables,
and to distinguish them from the spectral variables.
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TABLE I

SIMULATION PARAMETERS FOR THE ANALYSIS OF THE ERRORS

used as the true value to compute the errors, because the signal
is modeled as such.

Studying the effect of each simulation parameter on the
error quality over a wide range of values for all DPSD estima-
tors under consideration would be lengthy, but a preliminary
analysis [48] of the ideal estimator2 was used to determine
the parameters with higher impact on the errors. It was found
that for high sSNR, the errors show significant dependence on
sρHV and K for spectral polarimetric variables [34].

B. Analysis of the Single-Dwell Estimator
for the Single-Signal Case

The performance of the conventional and Bootstrap DPSD
estimators is studied for a single signal, and the ideal estimator
with K = 20 is selected as a standard for comparison.
Additionally, the analysis focuses on the errors as a function
of ρHV and for K = 1 (single dwell).

For a fair comparison between the different DPSD estima-
tors, the parameters for the conventional methods are selected
such that there is minimal frequency resolution loss and
spectral smearing. That is, for Welch’s estimator, the segment
length is set to L = M − 1 with maximum overlap; and
for Daniell’s estimator, a three-point moving-average filter
(p = 1) is used for PSD smoothing. The Bootstrap DPSD esti-
mates are obtained using K ′ = 20 pseudorealizations. Unless
otherwise noted, the analysis parameters are listed in Table I,
with ρHV varying from 0.85 to 0.99. The data window for the
analysis is a Blackman–Nuttall window, though it should be
noted that other windows with sufficient sidelobe levels yield
similar results.

The performance of the estimators in terms of the statistical
errors as a function of the true correlation coefficient is
shown in Fig. 2. The errors for Welch estimates (red line)
with the best possible frequency resolution are extremely
high and impractical for our purpose. It can be observed
that the Bootstrap DPSD estimates (blue line) are better than
Daniell estimates (green line) for all the cases. For s ẐDR, and
ρHV = 0.90, the Daniell estimator has a bias of 0.7014 dB,
while the biases of the Bootstrap estimator and the ideal
estimator are of 0.044 and 0.036 dB, respectively. The standard
deviations (SDs) are 1.386, 0.803, and 0.210 dB, for the
Daniell, Bootstrap, and ideal estimators, respectively. For the
same ρHV = 0.90, the normalized biases of sρ̂HV are 0.0368,
0.0126, and 0.00002; and the normalized SDs are 0.0557,

2Hereafter, the periodogram DPSD estimator is the one that averages K
independent periodogram PSD estimates, and the ideal DPSD estimator is the
periodogram DPSD estimator with K = 20 independent spectra.

Fig. 2. Errors of the spectral polarimetric variables as a function of the true
ρHV values. Bias (top-left) and SD (bottom-left) of s ẐDR, and normalized
bias (top-right) and SD (bottom-right) of sρ̂HV for ZDR = 1.5 dB. The
Bootstrap DPSD (blue line), Daniell (green line), Welch (red line), and ideal
with K = 20 (black line) estimates are compared.

Fig. 3. Errors of the spectral polarimetric variables as a function of the
number of independent dwells K for ρHV = 0.90. Bias (top-left) and
SD (bottom-left) of s ẐDR, normalized bias (top-right) and SD (bottom-right)
of sρ̂HV. The Bootstrap (blue line), Daniell (green line), Welch (red line),
and ideal (black line) estimators are shown for comparison.

0.0500, and 0.0116, for the Daniell, Bootstrap, and ideal
estimators, respectively. A clear improvement in the quality of
the DPSD estimates can be seen for the Bootstrap estimator
over conventional methods, especially for the s ẐDR bias.
It is important to note that for higher ρHV, the errors of the
Bootstrap estimates are closer to the error levels of the ideal
estimator. However, for less coherent signals (i.e., lower ρHV),
the quality of the estimates is degraded. Therefore, in practice,
with single-dwell DPSD estimates using the Bootstrap DPSD
estimator, a good qualitative analysis can be performed but the
error levels may not be sufficient for a reliable quantitative
analysis. Nonetheless, Section IV-C will show that the errors
can be improved by using multiple dwells.
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Fig. 4. Dual-signal analysis examples. Mean of the DPSD estimates of Bootstrap (blue line), Daniell (green line), and ideal (black line) estimates, and true
bulk polarimetric variables of signal 1 (red dashed line) and signal 2 (dark red dashed line) are shown for (a) case 4, (b) case 5, and (c) case 10.

C. Analysis of the Multiple-Dwell Estimator
for the Single-Signal Case

It is possible to obtain better error levels by averaging
multiple spectra for DPSD estimation (i.e., K ≥ 2) with
the estimators under analysis. As mentioned previously, more
spectra can be obtained from adjacent locations or consecutive
scans, and it is important to keep the averaging in any of
these dimensions to a minimum in order to avoid degrad-
ing the resolution. For this analysis, the statistical errors of
conventional and Bootstrap DPSD estimators for K ≥ 2
are compared with the ideal estimator, as shown in Fig. 3
(the same simulation parameters as before). For ρHV = 0.90,
the biases of the ideal estimator are equivalent to the Daniell
estimator with K � 13, 14, and the Bootstrap estimator with
K � 3. The Bootstrap DPSD estimator shows a significant
improvement in the biases and in the reduction of the number
of independent spectra needed. However, to meet the SD of the
ideal estimates, a considerable number of independent spectra
are still needed. The SDs for the ideal estimator are equivalent
to the Daniell estimator with K � 20 and the Bootstrap
estimator with K � 13. For the Daniell estimator, a marginal
improvement is observed, while the Bootstrap estimator shows
overall better performance. When K > 20, the Welch estima-
tor converges with the ideal estimator, while the Daniell esti-
mator performs marginally better, and the Bootstrap estimator
exceeds the performance of the ideal estimator. One important
drawback of the Bootstrap DPSD estimator is the inherent
loss of coherence associated with the application of correction
strategies, depicted in the negative biases of sρ̂HV for larger K .
Still, the normalized bias of sρ̂HV is within 0.002 for K ≥ 2
and for ρHV = 0.90, which is within the error level recom-
mended by [52]. While this limitation is noted, the Bootstrap
DPSD estimator can generally achieve better quality estimates
(for a given number of independent spectra) than conventional
estimators.

TABLE II

SIGNAL PARAMETERS FOR DUAL-SIGNAL ANALYSIS CASES

D. Methodology for Dual-Signal Analysis

As expected, there are various signal parameters that
affect the ability to separate two different spectral signatures,
including the difference between the mean radial velocities
of the individual signals, their spectrum widths, the differ-
ence between the SNRs, and their polarimetric characteris-
tics. To measure the performance of the DPSD estimators
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Fig. 5. Dual-signal analysis examples. Bivariate histograms of sρ̂HV and s ẐDR for thresholded spectral coefficients in logarithmic (log) scale of Bootstrap (top),
Daniell (middle), and ideal (bottom) estimates, with × indicating the bulk estimates of the composite (black cross) and individual (red cross) signals, for
(a) case 4, (b) case 5, and (c) case 10.

TABLE III

ABILITY TO DISTINGUISH SIGNAL CONSTITUENTS

when discriminating different signals in the spectra, 13 cases
were simulated, each containing two signals with different
polarimetric characteristics and several degrees of mixing.
Signal 1 is assumed to be a highly coherent signal with values
resembling those of typical raindrops, while signal 2 is less
coherent with negative ZDR resembling hypothetical tornadic
debris. Although a Gaussian assumption for debris signals
is not realistic, it serves to illustrate the presence of signals
with different polarimetric characteristics in the spectra, as
will be shown in the following cases. The parameters for
the signals used hereafter are summarized in Table II, with
N = 1000 iterations. In case 0, the difference in mean radial
velocities is sufficiently large and the spectrum widths are
moderately wide, such that there is almost no overlap between
the signals. For cases 1–4, the hypothetical debris signal is
assumed to be higher in power, and its mean radial velocity
is varied such that the difference in radial velocity is 0, σv,1,
2σv,1, and 3σv,1, for cases 1–4, respectively. Cases 5–9 assume
the raindrop and the debris signals are comparable in power,
with the difference in radial velocities varied as with the
previous case set. The same is done for cases 9–12, but the
raindrop signal has higher power.

E. Analysis of the Single-Dwell Estimator for the
Dual-Signal Case

The average of N = 1000 iterations for select cases is
shown in Fig. 4(a)–(c), for the Bootstrap (K = 1), Daniell
(K = 1), and ideal (K = 20) estimators. Additionally, the

values for the true bulk polarimetric variables for the signals
are plotted in dashed lines. In Fig. 5(a)–(c), a 2-D histogram
(hereafter, histogram) of sρ̂HV and s ẐDR, for corresponding
cases, is computed for the thresholded spectral coefficients
over N = 1000 iterations, in logarithmic (log) scale. Red
markers indicate the true values of the signals, while black
markers indicate the bulk estimate of the composite signal. It is
important to note that the distributions are skewed toward high
sρHV, but the mean values depicted in the DPSD estimates
are in fact closer to the markers in the histograms than
it appears. The logarithmic scale was chosen to emphasize
the distributions of the polarimetric characteristics of the
SNR-thresholded spectral coefficients, since the mean values
of the DPSD estimates may not always correctly represent
important differences in features between the estimators under
analysis. The error statistics for each individual signal, in every
case, are equivalent to those of the single-signal analysis.

In general, the ability to successfully discriminate different
signals in the spectrum is related to the difference in their
mean radial velocities, power ratio, and spectrum widths, since
these factors determine the shape of the power spectrum. Cases
with bimodal spectra [e.g., case 4, shown in Fig. 4(a) and 5(a)]
were found to have higher success in discrimination than cases
with unimodal spectra with different polarimetric character-
istics [e.g., case 5, shown in Fig. 4(b) and 5(b)], because
the degree of overlap of the spectral components of the
different signals is lower. In either case, techniques, such
as filtering of nondesired signals, could be used to further
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Fig. 6. PPI plots corresponding to KOUN data at 22:22:38 UTC, and
elevation φ = 1.36◦ with azimuth θ = 30◦ highlighted. (Top-left) SNRH.
(Top-right) v̄r . (Bottom-left) ZDR. (Bottom-right) ρHV. Grid lines are 30◦
and 10 km apart.

improve the accuracy of the bulk estimates of the desired
signal. In unimodal cases with a dominant signal [e.g., case 10,
shown in Fig. 4(c) and 5(c)], there may exist subtle indications
of the presence of a nondominant signal in the spectrum.
However, any meaningful quantitative information about the
masked signal is lost (e.g., wide high-power signal completely
masking a narrow weaker signal, signals of similar widths
and mean radial velocities, signals with similar polarimetric
characteristics and mean radial velocities, and so on) and
discrimination may be impossible even with an ideal DPSD
estimator.

A summary of the results of the dual-signal analysis is
presented in Table III. Here, a successful separation in the
histogram means that the polarimetric characteristics of two
distinct signals were qualitatively evident for these cases. The
Daniell estimates performed poorly in most cases due to the
high bias and variance of its estimates. In 8 out of the 13 cases
under analysis, the Bootstrap estimates showed distinct dis-
tributions near the true ZDR values of the signals, though
with a somewhat skewed distribution in sρ̂HV with a mean
bias similar to the values from the single-signal, single-dwell
analysis. Likewise, the ideal estimates were slightly more
successful with 11 out of 13 cases. In the three cases, where
the Bootstrap estimate performance was inferior to the ideal
estimates, it was found that a proper separation of the signals
was not possible due to the high variance. Furthermore, in
two cases where a wider and stronger signal was completely
dominating the weaker signal, none of the estimators were
able to identify the distinct spectral signatures.

V. RESULTS ON OBSERVATIONS

The following analysis uses I/Q time-series data col-
lected with the KOUN radar during the May 10, 2010
Moore–Norman, OK tornado. KOUN is an S-band polari-
metric radar with a 0.9◦ 3-dB beamwidth, range sampling
of 250 m, and a peak transmit power of 750 kW; on these
dates, it operated with a maximum unambiguous velocity of
27.5 m s−1. This case took part in the second largest single-day

Fig. 7. Range-Doppler plots of single-dwell Bootstrap DPSD estimates
corresponding to KOUN data at 22:22:38 UTC, elevation φ = 1.36◦, azimuth
θ = 30◦, and ranges 0.75 to 52.5 km, of (from left to right) estimates
of spectral SNR of the H and V channels (sSNRH and sSNRV), spectral
differential reflectivity (s ZDR), and spectral correlation coefficient (sρHV).

tornado outbreak documented in Oklahoma, which affected a
large part of northern, central, and southern portions of the
state. In-depth analyses based on weather radar observations of
the May 10, 2010 case can be found in [17]. According to [53],
during the late afternoon and early evening hours of this day,
13 different storms produced tornadoes, spawning a total of
36 tornadoes in the National Weather Service (NWS) Norman
forecast area alone, and also producing significant structural
damage over many areas with estimated losses in excess of
$595 million, three fatalities, and over 450 injuries. It is
indicated that due to the potent combination of atmospheric
conditions, the storms that developed quickly became tornadic
after initiation, with typical storm motions of 50 to 60 mph
(80.5 to 96.6 km h−1). Reports indicate that between 22:33 and
22:59 UTC, three to five tornadoes were occurring simultane-
ously every minute, which includes two EF-4 tornadoes (the
Moore and Norman tornadoes), and two other EF-3 tornadoes.
Additionally, very large hail was reported in several locations
with sizes up to 10.8 cm (4.25") in diameter (softball size).
A detailed report of this event can be found in [53]. Some
examples of polarimetric spectral signatures estimated with
the Bootstrap DPSD estimator that are not captured by the
bulk polarimetric variables are provided next.

The scan corresponding to 22:22:38 UTC with an elevation
angle of 1.36◦ was selected and the PPIs are shown in Fig. 6.
The data were grouped into 2.0◦ radials with a 0.5◦ azimuthal
spacing, yielding approximately 79 samples per dwell.
Range-Doppler plots are useful for spectral analysis, as they
illustrate spectral variables as a function of range and radial
velocity, with the intensity representing the particular spectral
variable. Each row in the y-axis of the range-Doppler plots
represents the spectrum for a given range location, and the
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Fig. 8. Plots of Bootstrap DPSD estimates [from top to bottom, estimates of spectral SNR of the H and V channels (sSNRH and sSNRV), spectral differential
reflectivity (s ZDR), and spectral correlation coefficient (sρHV)] corresponding to KOUN data at 22:22:38 UTC, elevation φ = 1.36◦, and azimuth θ = 30◦.
(a) Weather signature at 9.5 km. (b) Weather and ground clutter signature at 4.25 km. (c) Bimodal spectra at 32.25 km. (d) Multimodal spectra at 9 km. The
spectral components above a threshold of sSNRH > 20 dB and sSNRV > 20 dB are highlighted in blue, while the components below this threshold are
shaded in gray.

x-axis represents the radial velocity. With the aid of range-
Doppler plots, it is possible to observe the spatial distribution
and radar-relative motion of the scatterers in a particular ray,
and with the DPSDs, it is also possible to detect any signifi-
cantly different scatterer signatures for given radar resolution
volumes. By computing the DPSD estimates, distinct spectral
signatures can be found near azimuth θ = 30◦, as shown in
Fig. 7. The DPSDs were estimated with a Blackman window,
with no zero-padding for the DFT. Furthermore, a 20-dB SNR
threshold is used to censor low-SNR spectral coefficients.

Typical features, such as unimodal weather signal and
bimodal weather-plus-ground-clutter, are readily apparent in
the DPSD plots [Fig. 8(a) and (b)]. The weather signal has

a unimodal distribution with differences in s ZDR, which may
be attributed to smaller raindrops being centrifuged or size
sorting. Moreover, between 10 and 15 m s−1, the DPSDs
show negative s ẐDR and relatively high sρ̂HV, which could be
attributed to debris particles that are smaller than a wavelength
in size. For the example of weather mixed with ground clutter,
the hydrometeors are moving with a mean radial velocity
of approximately 22.5 m s−1 with positive s ẐDR and high
sρ̂HV; while the ground clutter signal is shown with a zero
mean radial velocity, negative s ẐDR, and low sρ̂HV. Other
interesting signatures are the bimodal signal spanning from
approximately 20 to over 50 km in range, and a multimodal
signal composed of weather, ground clutter, and an isolated
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peak at approximately 8 km. The DPSDs of these signatures
are shown in Fig. 8(c) and (d). While it is difficult to provide
a precise explanation for these observations, some hypotheses
can be elaborated. A weaker signal of low s ZDR is observed
within a bimodal spectrum [Fig. 8(c)], along with a stronger
weather signal with varying s ZDR values and relatively high
sρHV values. Although the weaker signal has high sρHV
values, this may be due to the fact that these presumably
nonhydrometeor scatterers might be small in size such that
the volumetric scattering is mostly homogeneous. Another
plausible explanation is that the weaker signal corresponds
to a range-folded echo, as evidence of range folding was
observed in the vicinity of the ray under analysis in later
PPI scans for the same data set. If such were the case,
the range-folded echoes could be mitigated with polarimetric
spectral analysis, showing another important potential appli-
cation of the Bootstrap DPSD estimator. For the last example,
a signal with multiple peaks in the spectrum [Fig. 8(d)]
can be observed in range locations near 8 km. The peak at
approximately 2 m s−1 corresponds to weather, with s ZDR
values close to 0 (small raindrops) and high sρHV. A wider
signal with negative s ZDR and varying values of sρHV can be
seen from approximately 5 to 19 m s−1. It is hypothesized that
the polarimetric characteristics of this spectral signature may
be attributed to debris, where the spectral components with
high sρ̂HV indicate homogeneous scattering, and the low sρ̂HV
indicate nonhomogeneous scattering from groups of different
types of debris. And also, an isolated peak of a scatterer with
high s ZDR and high sρHV with a motion of over 20 m s−1

can be seen in the spectra. This unknown scatterer could be
a group of relatively large pieces of debris being lofted in
the air, and a hypothesis for the velocity being higher than
the surrounding wind could be explained if the object was
ejected radially in the direction of the radar beam with a
higher tangential velocity. Alternatively, since ground clutter
contamination is still present at this elevation angle and range,
the echo could correspond to a moving vehicle. It is important
to note that these characteristics can be appreciated even with
single-dwell DPSDs, showing the potential of the Bootstrap
DPSD estimator in different spectral analysis applications.

VI. CONCLUSION

Bulk radar estimates depict useful information about the
characteristics and motion of weather phenomena. However,
these measurements are susceptible to biases when the signal
of interest is contaminated by other types of scatterers in the
radar volume. The DPSDs may unveil additional information
for the groups of scatterers moving at different Doppler
velocities, which can potentially aid in the characterization of
distinct scatterer types. Identification of different polarimetric
spectral signatures is important for many applications. For
example, by discriminating hydrometeors in spectra, it should
be possible to obtain more accurate wind velocity measure-
ments, which is very important for tornado intensity and dam-
age potential estimation. Previous DPSD estimation methods
required averaging K ≥ 20 spectra to get estimates with desir-
able error levels; a number of spectra could be obtained from
adjacent locations or consecutive scans. A smaller number

of spectra could be averaged, though the quality of the esti-
mates is usually insufficient for quantitative spectral analyses.
Additionally, good resolution is required in all dimensions in
order to capture important features of meteorological phenom-
ena that evolve relatively fast in time, in a small spatial extent,
and with scatterers moving at different velocities within the
radar volume (e.g., tornadoes).

The Bootstrap DPSD estimator was introduced as a means
to compute the DPSDs from a single dwell with minimal
resolution loss. It employs the bootstrap resampling concept,
which is a useful method to measure statistical properties of
estimators when the available sample size is small. Briefly,
the estimator preprocesses and then bootstraps the conditioned
I/Q time-series signals to obtain I/Q pseudorealizations, which
are in turn used to obtain bootstrapped PSD estimates. The
DPSDs are then computed by averaging the bootstrapped
estimates, and a bias correction is applied to obtain the final
estimates. The pre and postprocessing strategies, as well as
the appropriate selection of parameters are at the core of
the design of the Bootstrap DPSD estimator. The Bootstrap
DPSD estimator shows superior error statistics when compared
with conventional DPSD estimators for single dwell as well
as for multiple-dwell estimates, and it was shown that it
meets the performance of the ideal estimator with about
half the number of averaged independent spectra. However,
the Bootstrap DPSD estimator has a particular limitation in
that, by attempting to correct the signal coherency, it can
introduce a small bias in the spectral correlation coefficient
estimates. Further analyses of the impacts of this limitation
are needed. Additionally, the Bootstrap DPSD estimator shows
better performance than the conventional DPSD estimators
when discriminating polarimetric signatures of signals corre-
sponding to different groups of scatterers moving at different
radial velocities in the radar volume. However, the ideal
(but impractical) estimator still outperforms the single-dwell
Bootstrap DPSD estimator in the dual-signal analysis. Though
a multiple dwell, dual-signal analysis was not conducted, it is
expected that the Bootstrap DPSD estimator will have superior
performance compared with both the conventional and the
ideal DPSD estimators.

The potential of the Bootstrap DPSD estimator was demon-
strated with a few representative examples using data from
a real tornado case. It was illustrated in the examples how
polarimetric spectral analyses can unveil additional informa-
tion obscured by bulk estimates. It is expected that the spectral
analysis can provide more insight to better understand tornado
dynamics and their connection to weather radar measurements.
However, to validate the observations from a physical point of
view and to answer the scientific questions that motivated this
paper, more in-depth analyses are required. Such studies are
beyond the scope of this paper.

APPENDIX A
SINGLE-SIGNAL STATISTICAL ERROR CALCULATION

The average value of the SNR-thresholded spectral coeffi-
cients represents the strong signal components with minimal
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noise. These are obtained as

s Ẑdr = 〈s Ẑdr(k
′)〉 (A1)

sρ̂HV = 〈sρ̂HV(k ′)〉 (A2)

where k ′ values are the spectral coefficients for which
s ˆSNRH and s ˆSNRV are greater than 20 dB, and 〈·〉 indicates

averaging in the frequency domain. The bias of s ẐDR is then
obtained as

bias(s Ẑdr) = E[s Ẑdr − Zdr]

� 1

N

N−1∑
n=0

(s Ẑdr,n − Zdr) (A3)

bias(s ẐDR) = 10 log

[
1 + bias(s Ẑdr)

Zdr

]
(dB) (A4)

where N is the number of iterations (independent DPSDs)
used to study the statistical variability of the spectral estimates,
not to be confused with the K independent spectra used to
compute the DPSDs. The SD of s ẐDR is computed as

SD(s Ẑdr) =
√

E[(s Ẑdr − Zdr)2]

�
√√√√ 1

N

N−1∑
n=0

(s Ẑdr,n − Zdr)2 (A5)

SD(s ẐDR) = 10 log

[
1 + SD(s Ẑdr)

Zdr

]
(dB). (A6)

The normalized bias and SD of sρ̂HV are

bias(sρ̂HV)

ρHV
= E[sρ̂HV − ρHV]

ρHV

�
1
N

∑N−1
n=0 (sρ̂HV,n − ρHV)

ρHV
(A7)

SD(sρ̂HV)

ρHV
=

√
E[(sρ̂HV − ρHV)2]

ρHV

�
√

1
N

∑N−1
n=0 (sρ̂HV,n − ρHV)2

ρHV
. (A8)

Equations (A3)–(A8) are used to quantify the dependence
on the different parameters under analysis.
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