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Cognitive radar (CR) is a paradigm shift from a traditional

radar system in that previous knowledge and current

measurements obtained from the radar channel are used

to form a probabilistic understanding of its environment.

Moreover, CR incorporates this probabilistic knowledge into

its task priorities to form illumination and probing strategies,

thereby rendering it a closed-loop system. Depending on the

hardware’s capabilities and limitations, there are various degrees

of freedom that a CR may utilize. Here we concentrate on spatial

illumination as a resource, where adaptive beamsteering is used

for search-and-track functions. We propose a multiplatform

cognitive radar network (CRN) for integrated search-and-track

application. Specifically, two radars cooperate in forming a

dynamic spatial illumination strategy, where beamsteering

is matched to the channel uncertainty to perform the search

function. Once a target is detected and a track is initiated, track

information is integrated into the beamsteering strategy as part of

CR’s task prioritization.
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I. INTRODUCTION

One of the earlier authors to explore the subject of

intelligent radar is Fuhrmann [1, 2], where he termed

such a smart radar platform as an active-surveillance

system. A more recent work that utilizes the

knowledge-aided adaptive approach to radar systems

is [3]. In [4] Haykin formalized the notion of

cognitive radar (CR) to be a technological solution

for performance optimization in resource-constrained

and interference-limited environments. From this

statement it is clear that for a radar system to be

cognitive, it must operate such that it mitigates and,

if possible, exploits various interference sources that

it is faced with. In doing so it must use its resource

efficiently, whether this resource is energy, time, or

otherwise. For example, in surveillance applications

where a search function may be the main objective

of a system or mission, then detection of targets

is the ultimate goal. Usually, the surveillance area

is very large as compared with the beamwidth of

the sensor or antenna array. As such, in traditional

systems, a uniform or rasterized search pattern is

used in illuminating the scene. But in a large area,

various portions may have different likelihoods of

targets being present/absent. In other words various

areas have more certainty or uncertainty than others.

As such, a cognitive system performing detection of

targets should place more illuminations to areas of

most uncertainty.

The advent of CR is still in its early stages, and

CR applications are being investigated. In terms

of system identification/target recognition, various

contributions have been made. Addressing this notion

of a closed-loop intelligent radar, one early work was

presented in [5], where a CR platform was used for

target recognition. This CR utilized the waveforms

designed in [6], [7]. These waveforms were modified

as adaptive transmit waveforms for discrimination of

known targets. It was shown that this CR framework

could reduce the energy required for identification.

In [8], [9] this closed-loop radar strategy was applied

to discrimination of target classes rather than a finite

ensemble of known targets. In [10] a new, multi-band

CR performing target recognition was demonstrated.

In [11] an ultrawideband cognitive interrogator

network was introduced. In [12] a CR platform was

used for search-and-track applications. The cells of the

surveillance area were assigned initial probabilities,

which were updated as more measurements were

collected. The current probability map can be termed

as the probabilistic understanding of the channel.

While the main contribution of this paper is the

introduction of a cognitive radar network (CRN)

for integrated search-and-track applications, the

contributions are multiple-fold in nature. We develop

a system of two radars that performs a cooperative

search of a surveillance area by networking the two
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radars, where each radar is able to measure two

position parameters and one velocity parameter. By

a unique fusion of measurements via probabilistic

methods, the two radars form a four-dimensional

map of the radar channel. Each resolution cell in

this four-dimensional matrix carries a probability

of a target being present. Via the probability update

methodology presented here, the two radars are

able to update these probabilities by the most

recent radar measurement. Moreover, the updated

probabilities are incorporated in forming the radar’s

beamsteering strategy to efficiently search for targets.

This feedback mechanism is basic to cognitive

systems. As such, we form the beginnings of a CRN.

Moreover, we configure the CRN to track detected

targets. Here, we form an adaptive beamsteering

strategy for an integrated search-and-track such that

a balance between the search priority and preserving

track quality is accommodated. The delicate act of

balancing priorities is also a cognitive signature.

From the discussion of a surveillance area having

cells of target presence probabilities, it is clear that a

measure of uncertainty is needed. From information

theory entropy is a natural measure of uncertainty.

This metric is exploited and proves useful in efficient

utilization of resources for this CR application. That

is, the CR performs the search surveillance with the

beamsteering strategy dynamically tailored to the

area’s likelihood of target presence/absense. With

this beamsteering strategy it is said that the spatial

illumination is matched to the area’s uncertainty.

Indeed, the idea of designing resource strategies

“matched” to uncertainties of interest is critical in

CR technology, such that it ensures that the CR

resources are applied efficiently [5, 10]. In traditional

radar no provision is applied to “adaptively” change

the beamsteering pattern while in operation. In

contrast CR is a transmitter-centric closed-loop

radar system, where the transmit beamsteering

strategy is dynamically formed, i.e., it must be

designed real-time in an effort to respond, mitigate,

and even exploit its environment. Consequently,

received measurements are used to update the current

probabilistic understanding of the channel. Then, CR

may use this understanding to pinpoint the location

where the next illumination beam should be placed

[12]. This idea was extended to form a CRN in

a preliminary work reported in [13]. It is evident

that efficient utilization of the spatial dimension as

a resource for CR is performed by matching the

illumination pattern to the radar channel environment.

Specifically, in this application, the CRN developed in

this paper is a two-platform radar system designed to

perform surveillance of moving targets. In this work

the two radar platforms are static. The two radars

cooperate in searching for moving targets and in

forming a four-parameter track once target detection

is declared. Search and track functions present

two competing priorities to the CRN in its use of

beamsteering strategy as a resource from each radar.

The CRN developed in this work is designed such

that search and track priorities are accommodated. In

other words both functions are well integrated in the

closed-loop nature of the CR system. The individual

radars considered here are capable of measuring three

parameters (e.g. range, Doppler, and angle). The

CRN, which maintains a four-parameter track, forms

a four-dimensional probabilistic understanding of the

channel. Specifically, the probabilistic understanding

is a 4-D matrix or ensemble of cell probabilities of

target presence. Each radar is blind to the parameter

or dimension that it cannot measure. For a single

radar the cells in the dimension in which it is

blind to are said to be “ambiguous” (but not in the

traditional sense of the ambiguity function [14]).

Thus, probability update methods are needed for

radar receiving measurements with ambiguous

cells. Section II presents in detail the system we

design to be a CRN, defines a cell in the context

of the system being considered, and presents an

update procedure needed to update probabilities

which can be applied to the ambiguous cells.

Multiple hypotheses testing (MHT) and Bayes’ rule

are the engines on which the procedure is based.

Section III is where we begin to develop our CRN,

and it discusses aspects of radar systems that are of

importance. Section IV discusses two beamsteering

strategies for the two radar platforms: traditional

and search-only adaptive. Section V discusses the

integrated search-and-track adaptive beamsteering

strategy. In Section VI we summarize the concepts

needed to form a CRN and illustrate, via a block

diagram, the closed-loop nature of the two-platform

system that performs integrated search-and-track

functions, where a compromise between the two

priorities is accommodated. Sections VI-A and

VI-B present various search-and-track simulation

examples. Finally, in Section VI-C, a detection

performance comparison is made between a CRN

and a two-platform radar system employing traditional

rasterized search pattern via Monte Carlo simulations.

Section VII contains our conclusions.

II. SYSTEM DESCRIPTION, PROBABILISTIC
REPRESENTATION, AND PROBABILITY UPDATE

A. System Desription

Our interest is a radar system that performs

integrated search-and-track. Instead of one radar

platform, we are interested in two radar platforms that

illuminate the same surveillance area. Figure 1 shows

an overall picture of the system that we are trying to

build. The two radars search for moving targets in a

surveillance area and establish four-parameter tracks

(two positions and two velocities as shown in the

figure). It is our goal for the two radar platforms to
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Fig. 1. Overall picture of CRN for search-and-track application.

cooperate in searching for moving targets and forming

tracks for the detected targets. Specifically, it is our

goal for the two radars to cooperate in forming a

dynamic spatial beamsteering strategy that responds

to two competing priorities: 1) the continual search

for targets and 2) the maintenance of target tracks. As

shown in Fig. 1, we are interested in a four-parameter

target space. In our scenario each radar is able to

measure three parameters: 2 position parameters and

one velocity parameter. Due to the geometry of the

problem, only one velocity parameter can be measured

by each radar. Each cell in that 3-D space captures

the cubic (two position and one velocity) resolution

of each radar as dictated by their waveforms. It is

our goal that these radars form a network such that

a complete 4-D parameter description of the channel

can be formed. The radars are configured such that

the position resolutions are the same so that a fusion

resulting in a 4-D matrix that consists of target

resolution cells can be completed. Each resolution

cell in the 4-D parameter map will have a probability

of a target being present. Thus, the probabilistic

understanding or representation of the radar channel

being considered is a 4-D probability map.

B. Probability Update Methodology

Probability update methodologies needed for the

formation of a CRN were reported in our preliminary

work [15]. Here, we present the main engine of the

update methodology discussed in [15]. Consider two

sensors shown in Fig. 2(a). Sensor A can measure a

parameter μx but not μy, and vice versa for sensor B.

In Fig. 2(a) the channel may be described by a 2-D

map, where each cell is described by its (μx,μy)

coordinate. In practice one may think of these

parameters as velocities, which are measured by

Doppler frequencies. When the motion is orthogonal

to the radar line-of-sight, then the tangential velocities

for these cells cannot be measured, which results

Fig. 2. (a) Two sensors forming the probability map: Parameter

μy is ambiguous to sensor A and parameter μx is ambiguous to

sensor B. (b) Single radar updating a 1-D probability ensemble.

in ambiguity. The job of the probability update

methodology is to update probabilities for these cells.

We use a 2-D example to illustrate how probabilities

are calculated in a simpler example and note that

the methodology can easily be extended to our

multidimensional problem in Fig. 1. Since there are M

μx cells and M μy cells, there are a total of M
2 cells.

For sensor A note that under each μx-cell, there are M

μy cells that are ambiguous in the sense that sensor A

cannot resolve them. Similarly, for sensor B, under

each μy-cell, there are M cells that are ambiguous.

Hence, in this simplified example, the probabilistic

description of the channel is a list of M2 probabilities.

The goal of the update procedure is to update these

cell probabilities as new data are received.

We assume the presence of a target in one cell to

be independent of the presence of targets in other

cells. We assume a target to be physically smaller

than a cell’s physical extent and, therefore, cannot

occupy multiple cells, such that the cells may not

be correlated. Therefore, there are 2M possible

permutations of the overall target environment, where

a permutation is a unique combination of target

presence across the resolution cells and a permutation

is itself characterized by a probability of being true.

This two-platform cooperative system needs a way

to update the probability ensemble after each radar

illuminates the channel. First, we address how a single

sensor measuring a parameter μ with M cells, as

shown in Fig. 2(b), would update its cell probabilities

with received measurements. Then, the approach

is easily extended to the two-sensor case, where

the sensors cooperate to update a 2-D probability

matrix [15].

Let the 1-D vector of initial cell probabilities be

given by

P0 = [PM,0 : : :Pm,0 : : :P2,0 P1,0]

where Pm,0 is the initial prior for the mth cell. Consider

a sensor that produces an N-element measurement

vector with each data collection. Let sm be the signal

produced at the sensor if a target is present in the

mth resolution cell, and let the measurement indices
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be denoted by n= 0,1, : : : ,N ¡ 1. For a radar system
a target parameter is estimated via a frequency

measurement (e.g., Doppler for velocity parameter),

so we let the frequency produced by the presence of

a target in the mth cell be denoted by fm. When these

cell frequencies are the same, the cells are ambiguous.

When the frequencies differ, it may be possible to

resolve the cells. The signal produced by a target in

the mth cell is proportional to a normalized steering

vector given by

sm =
1p
N
exp(j2¼fm[0 ¢ ¢ ¢n ¢ ¢ ¢N ¡ 1]T): (1)

It is necessary to assume a signal model for the

measurements. For convenience let the targets be

deterministic, i.e., known amplitude and phase, and let

the noise be additive white Gaussian. Other scenarios

may produce measurements with different probability

density functions (pdfs), but the probability update

procedure is applicable to these cases (assuming the

pdfs are known). The environment can be described

by a multiple hypotheses framework. The hypotheses

in this framework are given by

H0 : z= n

H1 : z= s1 +n

H2 : z= s2 +n

H3 : z= s1 + s2 +n

H4 : z= s3 +n

...

H2M¡1 : z= s1 + s2 + ¢ ¢ ¢+ sM +n:

(2)

Each hypothesis Hi is a “joint” hypothesis

corresponding to a unique permutation of target

presence/absence in the individual cells. For

notational convenience we convert the joint hypothesis

subscript i to its binary representation of i =

0 ¢ ¢ ¢00,0 ¢ ¢ ¢01,0 ¢ ¢ ¢10,0 ¢ ¢ ¢11, : : : ,1 ¢ ¢ ¢11, where a 0
corresponds to target absent and a 1 corresponds to

target present in a cell. For example, consider the

ninth hypothesis in a five-cell scenario. If we let Si
correspond to the target signal produced by the ith

joint hypothesis, then the ninth hypothesis would

be represented as H01001, and the received signal

contribution would be S01001 = s4 + s1.

The pdf under the ith joint hypothesis is given by

p(z jHi) =
1

¼N¾2N
exp

μ
¡ 1

¾2
(z¡ Si)H(z¡ Si)

¶
:

(3)

In general the radar cannot observe each cell apart

from the others. Thus, we must first update the joint

hypotheses using Bayes’ rule, which states that the

posterior probability for each joint hypothesis is

given by

P(Hi j zk) =
P(Hi j zk¡1)p(zk jHi)

p(zk)
(4)

where P(Hi j zk¡1) is the probability of the ith
joint hypothesis prior to collecting the current

(kth) measurement. While the denominator of (4)

may not readily be available, it is the same for all

joint hypotheses and serves only to normalize the

probabilities such that they sum to unity. Thus, (4)

simplifies to

P(Hi j zk) = ¯P(Hi j zk¡1)p(zk jHi) (5)

where ¯ can be computed after evaluating (4) for all

joint hypotheses.

Now, we need the probability of joint hypothesis

Hi prior to the kth measurement: P(Hi j zk¡1). The
length-M probability vector that contains these

probabilities prior to the kth measurement is

Pk¡1 = [PM,k¡1 : : :Pm,k¡1 : : :P1,k¡1]: (6)

Let b1 through bM be the individual bits of the

binary representation of a joint hypothesis. For

example, the ninth joint hypothesis in the five-cell

scenario described above would have b5 = 0, b4 =

1, b3 = 0, b2 = 0, b1 = 1. Since target presence or

absence is assumed to be independent across cells,

the probability of the ith joint hypothesis is

P(Hi j zk¡1) =
MY
c=1

(Pc,k¡1)
bc(1¡Pc,k¡1)1¡bc : (7)

Once a measurement zk is received, it is used to

update the probabilities for all joint hypotheses. First,

2M likelihoods must be evaluated as dictated by (3).

Then, all of the 2M joint probabilities must be updated

by (4), where (5) ensures summation to unity. Finally,

the new cell probabilities are obtained through the

marginal probabilities of the joint hypotheses. To

calculate the marginal for the mth cell, we sum up

the probabilities for any joint hypothesis that has a

target-present state for that cell. The resulting sum is

the updated probability for that cell. This approach

can be extended to multidimensional probability maps,

i.e., it can be applied to separable or ambiguous cells

as illustrated in Fig. 2(a). The update procedure is

summarized and illustrated in Fig. 3.

III. FORMATION OF A CRN TO DETECT AND
TRACK MOVING TARGET WITH FOUR
PARAMETERS

Transmitter spatial illumination strategies are

dictated by predefined patterns. What makes the CR

paradigm unique is that the transmit strategies and
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Fig. 3. Flow diagram of update procedure for updating cell

probabilities.

receive processing are developed in a very integrated

manner. Recall that the radar propagation channel is

described probabilistically. Given time, probabilities

may increase or decrease in each cell. Thus, a CR

system must dynamically adapt the next interrogation

to the continual changes in the propagation channel

by processing both current measurements and prior

probabilities. In a CR where a track function is

required, tracking must also be incorporated. As

such, a CR performing integrated-and-track functions

should also include track priority in addition to the

search priority in forming the next illumination

strategy. It is our goal to build a CRN pictured in

Fig. 1 that will be used for integrated search-and-track

application and whose illumination strategy is

matched to the radar environment. As mentioned the

two radars cooperate in forming a dynamic spatial

beamsteering strategy that responds to two competing

priorities: 1) the continual search for targets and

2) the maintenance of target tracks. Here, we show

that a compromise can be made that balances the

two priorities by comparing the search uncertainty

of the channel with the uncertainty of a target track.

To this end we need to introduce uncertainty metrics

such that this compromise can be performed. In

Subsection A we introduce uncertainty measures for

search-and-track via entropies. We need measurements

in which to estimate position and velocities. Thus,

in Subsection B, we relate the 4-D positional and

velocity parameters to spatial and Doppler frequencies

as measured by the two radars. We need signal models

for the two radars, which is the topic of Subsection C.

Of course the terrain of the physical surveillance

area and the relative size the of the area being

illuminated affect the probability updates and, as such,

a scenario-specific probability model is introduced in

Subsection D. Since the radar beam usually covers

multiple cells and not just one cell, in Subsection E,

we address how to quantify an entropy measure for a

group of positional cells.

A. Entropy Measures of Search-and-Track Uncertainties

Entropy, which is a measure of uncertainty,

is a function of a random variable’s probability

distribution [16]. Thus, to quantify the uncertainty

of a target being in a cell, we may think of a single

cell (in a probability ensemble regardless of size) as a

binary random variable, where p is the probability of

target presence and 1¡p is the probability of target
absence. Entropy is generally given by

h=
X
x

p(x)
1

lnp(x)
: (8)

We can apply (8) to each cell in the probability

ensemble thereby creating a 4-D entropy map.

However, spatial illumination is a 2-D function. Thus,

we must collapse our 4-D entropy ensemble into

a 2-D entropy map. Then, considering the search

function, the CR can illuminate the area of most

uncertainty. That is, the CR illuminates the region

of the 2-D entropy map with the highest cumulative

entropy. In Fig. 1 both radars are able to measure two

positional dimensions and one velocity dimension.

Radar A is not able to measure vy , and radar B is

not able to measure vx, thereby producing the unique

ambiguity problem discussed in Section II, where it

was discussed that the probability map is nonetheless

formed and updated despite this unique problem.

If we are to incorporate tracking into our

illumination strategy, we also need the uncertainty

of the track quality such that we can illuminate the

target when this uncertainty becomes too high. The

uncertainty of a track (assuming Gaussian parameters)

depends on its covariance. The differential entropy of

any Gaussian vector with covariance matrix Y is given
by [16]

ht = 0:5ln(2¼e)
F det(Y) (9)

where F is the dimension of the vector and det(¢) is
the determinant of the matrix. It can now be seen how

the track priority can be incorporated into the search
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function; if the entropy ht of a target exceeds an

allowable level with respect to search entropy, then the

CRN can interrupt the search function and illuminate

the target. The track entropy is then reduced, i.e., the

track covariance is tightened, and the search strategy

resumes. Expanding on this idea we introduce a

way to make a trade between the search-and-track

functions by comparing the search entropy and the

track entropy. It should be noted that the two entropies

are of different types. To implement the desired

priority balance, we introduce a scale factor to act as a

dial between the two priorities.

B. Four-Dimensional Radar Channel

Consider Fig. 1 again. Each cell of the surveillance

area describes a position in x,y space. If there are

A cells in each position dimension, then there are

A2 position cells. Moreover, for each position cell,

there are various (vx,vy) velocity possibilities. If there

are B cells in each velocity dimension, then there

are B2 velocity cells. That is, there are A2£B2 total
combinations of target position and velocity.

In radar the parameters of interest are directly

related to signal frequencies. The physical

position-and-velocity vector (x,vx,y,vy) corresponds to

the observable spatial-and-Doppler frequency vector

(kx,dx,ky,dy), where the relation between the two

vectors is given by

(x,vx,y,vy) = (®1kx,®2dx,®3ky,®3dy) (10)

i.e., x= ®1kx, vx = ®2dx, y = ®3ky, and vy = ®4dy,

where the ®s are scalars. The exact relationship

between frequencies and parameters, i.e., the exact

® values, depends on geometry and/or application

but nonetheless have straightforward derivations. A

popular example is the generic relation fd = 2vd=¸c,

where fd is the Doppler frequency, vd is the radial

velocity, and ¸c is the frequency carrier wavelength

[17]. For now it suffices to say that each parameter

corresponds to a particular frequency as expressed in

general form via the ®s in (10).

Recall that in our application, a single radar

measures three parameters, i.e., it is not able to

measure velocity tangential to the radar-target

line of sight. Consider Fig. 1 where the radars

perform surveillance of the same area. To get a 4-D

understanding, the two radars cooperate. Each radar

has a 3-D cube of measurements after an illumination.

The problem is how to use the two distinct 3-D

measurement cubes to update a 4-D probability map.

The update procedure in [15] is applied to solve this

problem.

C. Signal Model For Two Radars

In active radar there are two ways in which a

position can be measured. Range can be measured

via temporal pulses (known as ‘fast-time’ sampling),

while angle can be measured via antenna elements. In

certain look-down geometries, target range can also

be related to elevation angle, which can be measured

with a vertical antenna array. Here, we use antenna

elements in two dimensions to measure two target

position coordinates. As shown in Fig. 1, both radars

are able to measure the spatial frequencies kx,ky.

Radar A is able to measure Doppler component dx,

and radar B is able to measure Doppler component dy
dimension. Considering radar A, the target signal (also

called target steering vector) at a particular (kx,dx,ky)

is given by

s= a−bx− c (11)

where − is the Kronecker matrix product and

a=
1p
Mx
exp(j2¼kx[0 ¢ ¢ ¢Mx¡ 1]T) (12)

bx =
1p
Nx
exp(j2¼dx[0 ¢ ¢ ¢Nx¡ 1]T) (13)

c=
1p
My
exp(j2¼ky[0 ¢ ¢ ¢My ¡ 1]T) (14)

where 0,1, : : : ,Mx¡ 1 are antenna element indices for
measuring kx; 0,1, : : : ,Nx¡ 1 are the temporal indices
for measuring dx; and 0,1, : : : ,My ¡1 are the antenna
element indices for measuring ky , respectively.

Let q be the index of the targets present in the

scene, i.e., q 2 (1, : : : ,Q), and s(q) be the steering
vector that corresponds to the qth target. Let the

2-D transmit beam pattern S, whose main beam is

centered on some (x,y) in the physical space, be

described by S(kx,ky). For convenience we assume

that the main beam gain is constant, and we ignore

the contributions of the sidelobes. If we let ´(q) be the

complex reflection of a target in the qth cell, then the

received steering vector due to this target is given by

v(q) = ´(q)S(kx,ky)s
(q): (15)

As mentioned previously radar systems operate in

clutter environments. Let the noise be w» CN (0,R),
where R= ¾2I+Cc is the covariance matrix that

results from both additive white Gaussian noise

(AWGN) and clutter interference. In our application

the two radar platforms are static, such that clutter is

centered at zero Doppler. In practice, however, clutter

is shown to have some Doppler spread due to intrinsic

clutter motion that occurs even for stationary radars.

We assume that the clutter covariance Cc is known.

The total signal contribution due to Q targets is given

by v=
PQ
q=1 v

(q), and the measurement z is given by

z= v+w. Then, the measurement becomes

z=

QX
q=1

´(q)S(kx,ky)s
(q) +w: (16)
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Considering radar B the target steering vector at a

particular (kx,dx,ky) is given by

s= a−dy − c (17)

where a and c are from (12) and (14) and where

dy =
1p
Ny
exp(j2¼dy[0 ¢ ¢ ¢Ny ¡ 1]T): (18)

Clearly, 0,1, : : : ,Ny ¡ 1 are the temporal indices for
measuring dy. Notice (15) and (16) also apply for

radar B.

D. Dynamic Probability Model

Now consider Fig. 4, which represents the physical

surface under surveillance by the CRN. While a small

area is being illuminated by the main beam, targets

may appear in unilluminated areas such that the

cell probabilities in those areas change dynamically.

In other words the uncertainty of a target being

present (or absent) in an unilluminated cell adjusts

to a value that is reflective of some steady-state

probability of the cell. Hence, there is a need to

model the probability changes for the unilluminated

cells during interrogation. Thus, in our simulations,

a dynamic probability model which reflects a cell’s

increase/decrease toward a steady-state probability

is implemented. The steady-state probabilities may

not be equal for all cells because they may be

scenario-dependent due to areas of the scene that are

more likely to be occupied or traveled by moving

objects or targets. For example, let a particular area be

a land area containing three major features. Ordered

in increasing difficulty for travel, they are: 1) dirt

road, 2) coarse ground, and 3) rocky ground. In

reality, the area may be part of an outback park, where

all types of vehicles are allowed to pass through

to any part of the area. It is likely that most of the

vehicles will travel the dirt roads for ease. Clearly,

the dirt roads should have the highest steady-state

probabilitie,s while the rocky grounds should have

the lowest steady-state probabilities. Because the area

has different steady-state probabilities, such an area

may be termed heterogeneous. Exact steady-state

probabilities are usually unknown a priori, but clearly

a model reflecting a scenario like the example above

could be constructed using land-use and land-feature

models. If indeed our goal is to build a CRN, then

the dynamic probability model should reflect dynamic

uncertainty changes, which can be used by each radar

to revisit various areas it has already illuminated since

probabilities in those areas can change over time.

For the purposes of illustration of our CR network,

all cells will be considered homogeneous, meaning

that all cells will converge to the same steady-state

probability. Of course, this simplistic assumption

may be not true in practice, and this simplistic model

is only used for simulation purposes. Also, in our

Fig. 4. Probabilities are updated in illuminated areas via

measurements. For nonilluminated cells, dynamic probability

model can be used.

Fig. 5. In this dynamic probability model, large concentric circles

indicate higher rates of convergence towards steady-state values.

scenario, we assume that targets are more likely to

enter the scene through the boundaries of the scene

rather than appearing in the interior of the scene.

Referring to Fig. 5 the concentric circles indicate

that the outside probabilities converge more rapidly

to their steady-state probabilities, which reflects

the fact that the scene is more dynamic near its

boundaries. That is, when the cells are not being

illuminated, the probability rate of increase/decrease

of an outside cell is greater than that of an inside cell.

Again, it should be noted that probability models are

scenario-dependent and that a good model depends on

a good understanding of the physical terrain as well as

of target behaviors.

E. Bit Entropy as Natural Measure of Target Cell
Uncertainty

For a particular cell the cell entropy (CE) (8)

becomes

hc =¡p log2p¡ (1¡p) log2(1¡p) (19)

which is said to have units in bits. It is the

well-known binary random variable entropy in

Shannon’s classical work [18], where p= 0:5

corresponds to the maximum uncertainty and p= 0

and p= 1 correspond to no uncertainty. If the cell

does not get illuminated as shown in Fig. 4, the
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Fig. 6. Traditional beamsteering strategies usually employ

rasterized-type patterns.

uncertainty should move towards its steady-state

uncertainty. If it gets illuminated then the cell gets

an updated probability value via the method in

Section II, and the new uncertainty value is easily

calculated via (19). If a cell has a probability of 0.5,

it achieves the maximum CE of 1 bit. Typically, the

sensor beamwidth covers an area (the area of a beam

position) greater than just one cell, and, thus, we are

interested in the uncertainty of a group of cells. To get

an entropy value for a particular beam position, we

sum the individual CEs of the illuminated cells.

IV. BEAMSTEERING STRATEGIES

A. Traditional Search Beamsteering Strategy

In practice the desired surveillance area is very

large. Figure 6 shows how the traditional or rasterized

beamsteering strategy works. The beam scans to

cover the full area. We define a beam position to

be the group of cells covered by a beamwidth. We

make a simplifying assumption that a square area

is illuminated by the main beam. In the rasterized

search strategy, the idea is to place the beam into

the first beam position (which is the left top-most

portion of the total area of the first row in Fig. 6),

receive measurements, and then place it in the next

or adjacent beam position. When it reaches the

end of the first beam row, the beam is placed in

the beam position below it, which is in the second

row. A variation is also shown in Fig. 6. However,

this fixed conventional scanning strategy may be

improved by matching the beamsteering to a measure

of uncertainty.

B. Adaptive Search-Only Beemsteering Strategy Based
on Area Uncertainty

At any point in time, a good strategy for a CR is

to place the beam in the location that provides the

most reduction in uncertainty via data collection,

which is directly related to mutual information (MI)

[16]. However, we have a 4-D probability ensemble,

and the spatial beam is a function of a 2-D pattern.

We have to reduce the corresponding 4-D entropy

ensemble by collapsing it into a 2-D entropy map that

corresponds to the 2-D physical area (x,y). First, we

calculate the target CEs as dictated (19). To collapse

the 4-D map to a 2-D map over (kx,ky) dimensions,

we average over the Doppler frequencies as given by

hc(kx,ky) =
1

BxBy

BxX
j=1

ByX
i=1

hc(kx,dx,ky,dy): (20)

Equation (20) is the 2-D entropy map corresponding

to our surveillance area and is clearly a function of

the spatial frequencies. If the total number of cells in

a beam position is C, then the beam position entropy

(BPE) is simply given by

hP =

CX
u=1

hc,(u)(kx,ky) (21)

where u serves as a cell index in a beam position

and hc,(u) is the corresponding CE via (20). If the

total possible number of beam positions within the

surveillance area is K, then we calculate K different

entropy values, one for each beam position. To match

to the search area of most uncertainty, the CR system

illuminates the beam position with the largest hP .

Next, the CR again recalculates the BPEs and again

illuminates the beam position with the largest BPE.

The cycle continues until a detection occurs and a

track is established. Once a track is established, a

compromise must be made between the search and

track functions.

V. ADAPTIVE SEARCH-AND-TRACK BEEMSTEERING
STRATEGY

Closed-loop operation is one of the defining

characteristics of a cognitive system, i.e., CR

dynamically responds to its environment. Another

is the ability to account for inputs or commands

critical to the objectives of a system, such as mission

priorities. Here, we develop a two-platform CR system

that is able to perform two task priorities (search

and track) that compete for the spatial illumination

(beamsteering) resource. We introduce a way for the

CR to take in input that dictates the prioritization

between search and track functions. If we are to

perform tracking, we need a motion model. In

addition, we need an initial estimate of the target

parameters and a prediction of the next parameter

values as targets move. In our application we use the

the well-known Kalman tracker, which is presented

in [19], as the optimal solution for target parameter

estimation in a Bayesian context.

A. Motion Model

In our motion modeling and tracking, we track

kx and ky and their corresponding spatial frequency

velocities vkx and vky , which are given by vkx =

(1=²1)dx and vky = (1=²2)dy, respectively, where

1=²1 = ®1=®2 and 1=²2 = ®3=®4 via (10). Let ri be
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the state vector of true target parameters given by

ri = [kx vkx ky vky ]
T, where i is the current time step.

Let 4T be the time step between illuminations by
either radar. Then, defining the transition matrix A

to be

A=

26664
1 4T 0 0

0 1 0 0

0 0 1 4T
0 0 0 1

37775 (22)

the updated target state vector is ri+1 =Ari. While we

have addressed the probability updates for parameter

cells, we have not yet addressed the estimates of

true parameters such that target tracking can be

established. Let the estimated state vector be r̂i =

[k̂x v̂kx k̂y v̂ky ]
T. Then, the motion model becomes

r̂i+1 =Ar̂i+q, where q»N (0,Q) represents the
variation in target maneuvers as a zero-mean Gaussian

process with a covariance matrix of Q.

B. Target Parameter Estimation

Initializing a track requires estimating target

parameters of interest, but the detecting radar is

blind to one of the Doppler frequencies. As such,

the target parameter vector r involves only three of

the frequencies of interest. Let’s consider a detection

by the radar that is able to measure the dx frequency.

For example and simulation purposes, assume a target

model where target amplitude is known, then the pdf

of the measurement z is given by

p(z;kx,²1vkx ,ky) =
1

¼N det(R)

£ exp[¡(z¡ s(kx,²1vkx ,ky))HR¡1

£ (z¡ s(kx,²1vkx ,ky))]: (23)

We desire to find a vector estimate that maximizes the

above likelihood. It is shown in the Appendix that this

is equivalent to

min
kx,vkx ,ky

[RefzHR¡1s(kx,²1vkx ,ky)g]: (24)

Note the absence of spatial frequency velocity vky
since the radar is blind to dy frequency. For an initial

estimate of target parameters, we have the choice of

any of the velocities within the cell of detection, or

we may choose the center of the detected cell. For

the purposes of demonstrating our CR framework via

simulation, we form parameter estimates using the

asymptotic properties of the MLE. For large data sets

it is shown [20] that the MLE is unbiased, i.e., that the

mean of the estimates are equal to the true parameters.

Moreover, the MLE is asymptotically Gaussian

distributed, and the covariance is approximately equal

to the Cramer-Rao lower bound (CRLB). That is, the

estimated target parameters are Gaussian-distributed

according to

r̂»N (r,J¡1(r)) (25)

where J¡1 is the inverse of the Fisher information
matrix (FIM) and is equal to the CRLB covariance.

We can produce useful parameter estimates for

simulation purposes without a full numerical search

by taking realizations as dictated by (25). The

covariance is given by C(r̂) = J¡1. In [21] it is noted
that each element of the FIM is given by

Jij = Tr

"
R¡1C

@R¡1C
@¹i

R¡1C
@R¡1C
@¹j

#
+2Re

"
@H¹

@¹i
R¡1C

@¹

@¹j

#
(26)

where Tr(¢) stands for the trace of a matrix and
Re(¢) stands for a real part of a complex number. ¹
and RC are the mean and covariance matrix of the

measurement, respectively. Here, we consider the

approach to get estimates for four parameters. In our

simulation we assume that the covariance is known

and that ¹, the mean steering vector, is given by

¹= S(kx,ky)s̃(kx,vkx ,ky,vky ) (27)

where S(kx,ky) is the antenna gain and the steering

vector is given by

s̃(kx,vkx ,ky,vky ) = a−b− c−d (28)

where a= [0 exp(j(1)2¼kx) ¢ ¢ ¢exp(j(Mx¡ 1)2¼kx)]T,
b= [0 exp(j(1)2¼vkx) ¢ ¢ ¢exp(j(Nx¡ 1)2¼vkx)]T,
c= [0 exp(j(1)2¼ky) ¢ ¢ ¢exp(j(My ¡ 1)2¼ky)]T, and
d= [0 exp(j(1)2¼vky ) ¢ ¢ ¢exp(j(Ny ¡ 1)2¼vky )]T. The
individual FIM entries needed for the CRLB are

J11 = 2S
2

£Re
(·

@a

@kx
−b− c−d

¸H
R¡1C

·
@a

@kx
−b− c−d

¸)
... (29)

J44 = 2S
2

£Re
(·
a−b− c− @d

@vky

¸H
R¡1C

·
a−b− c− @d

@vky

¸)
:

Due to the length of (29), the rest of the equation

list is not shown here. The reader is referred to [22].

While (29) seems formidable it is easily evaluated.

When these individual entries are calculated, the

FIM is formed, and the CRLB is found by taking its

inverse. Note that the CRLB is inversely proportional

to S2, the square of spatial pattern gain, i.e., the

errors are smaller for larger antenna gain due to an

increase in signal-to-noise ratio (SNR). This approach

of taking a random draw as an estimate produces

relatively equivalent statistical models for parameter
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estimation errors as the MLE [12]. We can now use

(25) to obtain initial estimates of the parameters once

detection is declared. Tracking can now commence,

which is the subject of the next section.

C. Kalman Tracking and Target Track Entropy

In our application we use the Kalman tracker,

which was presented in [23] as the optimal solution

for target parameter estimation in a Bayesian

context. The Kalman tracker is clearly integral to our

application, but it is not the focus of this work, and

as such, only the pertinent equations are presented

here. We refer the interested reader to the excellent

treatment in [20].

First, let r̂ be the initial vector estimate of the
parameters that is based on MLE and generated

with a realization using the CRLB C(r̂). The

initial error covariance is P=C. Violation of this
assumption, clearly, may affect subsequent estimates.

For simulation purposes we make this our initial

assumption. The prediction for the next state is r̂i+1 =
Ar̂i, and the prediction covariance matrix (PCM) is
Pi+1 =APiA

T+Q, where Q is the covariance of the

target maneuverability given by

Q=

26664
0 0 0 0

0 ¾2vkx 0 0

0 0 0 0

0 0 0 ¾2vky

37775 : (30)

The Kalman gain matrix (KGM) is K= Pi(C+Pi)
¡1,

where the updated state vector or correction is given

by r̂i = r̂i+K(u¡ r̂i) and u is the vector with true
parameters plus noise. Then, the state covariance

matrix (SCM) is given by

Pi = (I¡K)Pi (31)

which represents the covariance of the target state

vector after an illumination. Thus, the SCM grows

when the target is not illuminated. Clearly, the quality

or “tightness” of the track depends on the tracked

target’s SCM in (31). Using (9) our system’s target

track entropy (TTE) is given by

ht = 0:5ln(2¼e)
4 det(P): (32)

The TTE plays an important role in the formation of

an adaptive integrated search-and-track beamsteering

strategy for the CR system, which is the topic of the

next subsection.

D. Adaptive Integrated Search-and-Track Beamsteering

There are two aspects of the CR system in which

the search function and track function will be truly

integrated. One is in propagation of probabilities of

tracked targets. Due to motion a tracked target will

eventually move into a nearby cell. Our probability

updates do not account for target motion and,

therefore, are inadequate in incorporating the fact that

a target may have or has moved into a nearby cell. Via

the Kalman filter the CR network predicts the next

position for the tracked target. If the next predicted

position crosses a cell boundary, then the CR uses

this knowledge to shift the high probability associated

with the target to the new cell. The resulting predictive

nature of the CR via the integration of the Kalman

filter allows for propagation of the cell probability

associated with the tracked target. The Kalman filter

alone does not consider cell probabilities, and Bayes’

rule does not account for the motion of targets across

cells. But the CR framework, which integrates cell

probabilities with tracking, has this unique capability

not available in conventional radar systems. The

other aspect is how to balance the two priorities that

compete for the spatial beamsteering resource. The

search priority dictates the beamsteering strategy such

that the search uncertainty is reduced. In other words

the search priority strategy is for the CR to detect as

many moving targets as it can before they leave the

scene. On the other hand the track priority dictates

the CR to frequently illuminate the beam on the target

such that a high-quality track is maintained.

We have CE as a measure of uncertainty of a cell

(19) and TTE as a measure of track uncertainty as

given by (32). In one illumination we only cover

one beam position. The BPE is given by (21). As

pointed out earlier with the “adaptive search-only”

approach, we can calculate all the possible beam

position entropy values and choose to put the next

beam to the position with the maximum BPE. To

integrate our track priority, a straightforward way is to

monitor the TTE. When the TTE becomes high such

that the track quality needs to be maintained (that is,

SCM has grown and needs to be tightened), the CR

system needs to place the next beam on the tracked

target. A novel idea is to somehow compare the

TTE with the maximum BPE and, when the TTE is

larger in some sense than the BPE, then the “adaptive

search-only” is interrupted to accommodate the track

priority, and the beam is moved to the tracked target.

It is not apparent how one compares TTE with BPE

since they are different entropy types. The TTE is an

uncertainty metric involving target parameters that

can take on continuous values, while the BPE is an

uncertainty metric accumulated over many binary

random variables. The TTE is measured in nats. The

BPE is measured in bits, whose maximum value is

C bits, which is the number of cells C in the beam

position times the maximum CE of 1 bit. Here, we

propose using a scaling factor − that renders both

entropy types to be comparable, i.e.

−ht » hP (33)

where the symbol » means that the entropies in (33)
are in the same order of magnitude. Thus, considering

a single tracked target, the illumination strategy rule is
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Fig. 7. Uncertainties due to search area and tracked target. Radar

with turn decides which beam position to illuminate by comparing

BPE and TTE.

given by

if ht >
hP,max

−
then illuminate target

else illuminate area with max BPE

(34)

where hP,max is the maximum BPE over all possible

beam positions at the current time. The situation is

shown in Fig. 7, where a TTE grows over time when

not illuminated and the radar/s must update to curtail

the growth of the track uncertainty. This approach

has worked very well. That is, by changing the value

of −, the CR network is able adjust the emphasis as

to which function to prioritize. Indeed, − becomes

an input to the CR system that controls the overall

system preference between search and track priorities;

a useful feature for any practical radar system. Once

− is initialized the CR system will operate in a

Fig. 8. Two-platform CRN for ground surveillance performing integrated search-and-track of moving targets.

closed-loop manner but tries to maintain the balance

between priorities as dictated by −. A good starting

value for − is to look at the desired track quality

requirement. In other words we have an SCM to

maintain or a desired TTE, then we scale TTE (with

−) such that the scaled TTE is C bits or less (since

C is the maximum possible BPE). With this method

it can be said that the CRN employs an “adaptive

integrated search-and-track” beamsteering strategy.

In the next section we present example applications of

the CRN that we just built.

VI. SIMULATION AND PERFORMANCE RESULTS
WITH INTEGRATED SEARCH-AND-TRACK CRN

In the last section we developed all the necessary

models to build a two-platform CR network that

accommodates the priority needs as dictated by the

search-and-track functions of a radar system that

performs ground surveillance with a four-parameter

target track. Before simulation results for various

scenarios are presented, it is worthwhile to review the

operational framework of our CRN.

The operational framework is best described by

Fig. 8. Note the necessarily closed-loop nature of

the CR network. First, the system user inputs −,

which represents the priority scale that the CRN

uses to dial search-and-track priorities. Then, initial

prior probabilities are set for all the cells in the 4-D

probability ensemble. During initialization neither

radar illuminates the scene. We assume the use of

the dynamic probability model after the priors are

set. The CR system calculates BPE for all beam

position possibilities, finds the maximum, and

ROMERO & GOODMAN: COGNITIVE RADAR NETWORK: COOPERATIVE ADAPTIVE BEAMSTEERING 925



notes the beam position location. If no targets are

detected, any TTE is initialized to zero. The CRN

instructs radar A (assuming that radar A starts) to

illuminate the beam position with the highest BPE,

and as such, the search function commences. Radar

A receives the measurements and passes them to

the CR processor. The CR processor processes the

measurements and updates the 4-D probability map.

It should be mentioned that the CR processor may

actually reside in either radar or be a separate unit.

The actual location of the CR processor depends

on the hardware capability of the system and/or

the individual radar sensors. The proper allocation

strategy of the processing functions is interesting

but is not discussed further. Once the probabilities

are updated, they are compared with the detection

probability threshold. If a cell has a probability greater

than the threshold, detection is declared, and a track

is established. The CRN calculates the TTE for this

target. If this TTE is greater than the 1=−-scaled

maximum BPE as dictated by (34), then the CRN

instructs radar B to illuminate the target; otherwise

it illuminates the position with maximum BPE. If the

radar illuminates the tracked target, then the center of

the beam is placed on the target’s cell, except when

the target is in the corner or on the edges. In these

cases the beam is placed such that the target is inside

it. Then, radar B receives the signal returns. The

CRN updates the probabilities, check for detections,

and establishes tracks for detected targets, and the

cycle continues. If there are now multiple tracks,

then the CR calculates for the maximum TTE and

notes the location of the corresponding target. If

(34) is met then the radar (with turn) illuminates

the target. Clearly, the procedure continues, and a

method for the CRN to decide which function to be

prioritized at any time in its operation is in place. As

noted this beamsteering strategy is real-time and is

dynamically matched to the channel (search and track)

uncertainties.

A. Track Example for Adaptive Search-and-Track

For all the examples throughout this paper, the

spatial and Doppler frequencies are normalized, i.e.,

¡0:5< kx < 0:5, ¡0:5< dx < 0:5, ¡0:5< ky < 0:5, and
¡0:5< dy < 0:5. We pick ²1 and ²2 to be ¡5 such that

dx =¡5vkx (35)

dy =¡5vky : (36)

Then, ¡0:1< vkx < 0:1 and ¡0:1< vky < 0:1. The
variances of the spatial frequency velocities are set

at 1e-7, and the timestep is set at 0.0025. Both radars

operate in clutter environments, where each clutter

power spectral density (PSD) is lowpass-shaped and

is centered at 0 Hz. The clutter-to-noise ratio (CNR)

is set at 30 dB. The number of antenna elements for

spatial measurements are Mx = 3 and My = 3, and the

number of filter taps for Doppler measurements are

Nx = 15 and Ny = 15.

In our scenario examples the target is initially

located in or near cell 1; more specifically, the target

starts at kx =¡0:45, vkx = 0:085, ky =¡0:45, and
vky = 0:085. The CRN uses the adaptive integrated

search-and-track strategy developed in the last section.

The illumination update rate, the rate in which a

tracked target is illuminated, is set to the rate that

would result if the rasterized scanning strategy were

used. The scenario size for this experiment is such

that the cell sizes for the spatial frequency kx, the

spatial frequency velocity vkx , the spatial frequency

ky, and the spatial frequency velocity vky are Ax = 30,

Bx = 15, Ay = 30, and By = 15, respectively. Figure 9

shows the track for the kx and ky parameters, and

Fig. 10 shows the track for the vkx and vky parameters.

The left-hand panel shows the track for the entire

duration of the target’s motion. That is, it shows

the track from the moment the target was detected

until it left the scene. Illumination 1 is not the first

illumination or time step when the target appeared

in the scene but rather corresponds to the estimated

location of the target when it was first detected. The

right-hand panel shows the track for the first 1000

time steps (illuminations) and zoomed close-in to

show the granularity of the track. Note from the

initial parameters of the target, that it was set to

start near the northwest corner of the scene, travel

across the scene, and leave the scene somewhere

in the southeast corner. In terms of position, notice

from Fig. 9, that the target was detected when it

was at (¡0:2686,¡0:2923) and the initial estimate
was (¡0:2623,¡0:2990). The target left the scene at
location (0:4998,0:2541), and the last estimate was

(0:5009,0:2567). Thus, it was detected between its

starting location and the origin (0:0000,0:0000), i.e., it

was detected early in its course of motion.

B. Beam Accumulation Histories with Increasing −

We had mentioned that a way for the CRN to

dictate the importance of a track priority as opposed

to the search priority is through the use of the priority

dial −. We consider a fairly large scenario size of

60-by-15-by-60-by-15. We consider experiments in

which we change the value of − and observe the

effects on track quality as a function of increasing −.

More interestingly we look at the beam accumulation

histories as a function of increasing −. Beam

accumulation history is simply a picture of the whole

surveillance area that shows the number (or density)

of illuminations spent on each cell of the surveillance

area in the course of an experiment. First, it should

be clear that the beam accumulation history for the

rasterized beamsteering strategy would be uniform

and, therefore, uninteresting.
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Fig. 9. Position tracks of example scenario using adaptive

integrated search-and-track with scenario size of

30-by-15-by-30-by-15. Left panel shows entire track history. Right

panel shows first 1000 time steps as soon as track is established

and zoomed close-in to show track granularity.

In this scenario size the − = 0, − = 1e20, and

− = 5e20 values are used. The value of − = 0 means

that track quality is ignored. The value of − = 1e20

corresponds to a small increase in track priority,

and the value of − = 5e20 represents the highest

track priority. It should be clear that the values

of the −s would actually correspond to different

illumination update rates once a track is detected.

Figure 12 contains the beam accumulation histories

corresponding to the use of the three −s. The target

was detected between the origin and the southeast

corner of the scene. The beam accumulation history

corresponding to − = 0 (top panel) clearly reflects

the CRN’s attempt to match the search uncertainty

with no regard to the target track, while the beam

accumulation history corresponding to − = 1e20

reflects some emphasis on the target track, where

an increase in the accumulation density around the

southeast corner of the scene can be discerned. The

bottom panel corresponds to the beam accumulation

history that employs − = 5e20. Here, the pronounced

streak near the southeast corner of the scene clearly

indicates that the target was detected between the

origin and the southeast corner of the scene and that

the track priority emphasis is significant.

Note also the “concentric” circular contour of

the beam histories. This is due to the fact that the

beamsteering strategy was matched to the dynamic

probability model of our scenario that was discussed

in Section III. The case of − = 0 is really the adaptive

Fig. 10. Velocity tracks of example scenario using adaptive

integrated search-and-track with scenario size of

30-by-15-by-30-by-15. Left panel shows entire track history. Right

panel shows first 1000 time steps as soon as track is established

and zoomed close-in to show track granularity.

search-only strategy, and it is very clear in Fig. 12 that

the beams are concentrated on the outside cells rather

than the inside. For the − = 1e20 and the − = 5e20

cases, the adaptive search-and-track beamsteering

strategy is formed such that the channel uncertainty is

reduced while maintaining an illumination update rate

for the tracked target. Figure 11 shows the positional

tracks for the three sample experiments. The left panel

shows tracks for the kx position, and the right panel

shows tracks for the ky position. From the moment

of establishing track for this target, there were about

750 time steps (illuminations) until the target left the

scene. For brevity velocity tracks are not shown. As

expected there is an improvement in track quality

going from − = 0 to − = 1e20 since the illumination

updates are more frequent for − = 1e20 than for

− = 0. The track quality improvement for − = 5e20

is clearly the best among the three because of the

highest illumination update rate. The increasing target

track quality intuitively matches the corresponding

beam accumulation histories.

C. Performance Simulation

Finally, we want to gauge the detection

performance of the two-platform CRN employing

adaptive search-and-track beamsteering strategy

compared with a system with two radars, each of

which employ the traditional rasterized beamsteering

strategy. For fair comparison the illumination

update rates for both systems are set to be
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Fig. 11. Positional tracks (kx,ky) for scenario size

60-by-15-by-60-by-15 for different values of −. Top panel: − = 0.

Middle panel: − = 1e20. Bottom panel: − = 5e20.

equal. The detection performance is calculated

via Monte Carlo simulation, and the detection

performance is over increasing SNR. We consider

two manageable scenarios of 24-by-15-by-24-15 and

30-by-15-by-30-15. For each SNR there are 20 Monte

Carlo trials. For each trial we allow for 25 targets to

appear in the scene. That is, for each SNR, there are

a total of 500 targets in which to average detection

performance. To conveniently ensure the illumination

update rates are equal, we let only a maximum of two

targets move in the scene at a time. That is, when

one target leaves, we allow one target to appear,

while another target is potentially being detected or

tracked. The starting positions and velocities of the

targets are random but with slight restrictions on

the positions and velocities. Recall that our dynamic

probability model dictates that the targets are more

likely to appear on the edge or in the corners. Thus,

we allow for the targets to take initial positions at

random edges when they first appear in the scene. To

keep the simulation time manageable, we allow for

targets to take on all possible velocity values except

the ones near 0 Hz. Those velocities render the motion

very slow such that the simulation run time becomes

impractical for a large Monte Carlo run.

Fig. 12. Beam energy accumulation histories for scenario size

60-by-15-by-60-by-15 for different values of −. Top panel: − = 0.

Middle panel: − = 1e20. Bottom panel: − = 5e20.

Figure 13 shows the performance comparison

result of the simulation. The top panel shows

performance results for the scenario size of

24-by-15-by-24-15. The performance curve for

the CRN is labeled “adaptive 24-by-24,” and the

label “rasterized 24-by-24” is for the two-radar

platform that uses the rasterized beamsteering

strategy. Notice how well the CRN performs

compared with the two-radar platform that utilizes the

rasterized beamsteering strategy. The bottom panel

shows performance results for the scenario size of

30-by-15-by-30-15. The performance curve for the

CRN is labeled “adaptive 30-by-30,” and the label

“rasterized 30-by-30” is for the two-radar platform

that uses the rasterized strategy. Again, the CRN

performed well compared with the two-radar platform

that utilizes the rasterized beamsteering strategy. Note

the slight performance degradation due to the larger

scenario. A larger scenario means larger coverage

time, which may result in performance loss. Notice,
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Fig. 13. Performance comparison between two-platform CRN

employing adaptive beamsteering strategy and system with two

radars employing traditional rasterized beamsteering strategy with

search-and-track application in surveillance areas of

24-by-15-by-24-by-15 cells and 30-by-15-by-30-by-15.

however, that the performance degradation for the

adaptive 30-by-30 is very small compared with the

rasterized 30-by-30, which degraded substantially.

This is the effect gained by having a cognizant radar

network that dynamically tailors its beamsteering

strategy to the channel uncertainties (search and track)

as opposed to a system that employs conventional

beamsteering.

The limiting detection performance of either

systems depends on scenario size, time step size,

clutter PSD shape, and other factors. For example, a

target may appear and quickly disappear depending on

the random draw of its actual positions and velocities.

Also, in our simulation, we automatically remove a

target once it surpasses the maximum normalized

spatial frequency values of ¡0:5 and 0.5 (edges
and corners). This means that, at times, a target

may quickly appear, and a particular realization due

to target maneuverability may render it to quickly

disappear where the CRN or otherwise may not

have the time to illuminate that target area. Thus, the

fact that detection does not approach 100% is not

of particular concern. Instead, in this experiment,

we point out the clear advantage of the detection

performance of a CRN that employs adaptive

beamsteering compared with traditional scanning

method.

VII. SUMMARY AND CONCLUSIONS

In this paper we concentrated on the development

of a CR system that is geared towards the search-and-

track application. This CR system exploits the spatial

dimension as a resource via the adaptive beamsteering

strategy for the search-and-track application. In

designing a matched spatial illumination beamsteering

strategy for a two-platform CRN that performs the

search-and-track application with four-parameter

tracking, we first developed a probabilistic

representation or understanding of the channel. This

resulted in an ensemble or map of probabilities,

where each resolution cell represented a 4-parameter

location that any target could occupy. Each cell

contained a probability of a target being present. Since

each radar could measure only three parameters, we

addressed the problem of having ambiguous cells in

the dimension that the radar could not measure. We

developed a method to update probabilities based on

MHT and Bayes’ rule. We also developed a dynamic

probability model, which reflected the fact that an area

could have portions where the likelihood of targets

present might be higher than others. Initial estimates

of target parameters were needed after detection. For

the purposes of simulating our CR system, we used

MLE asymptotic properties and used the random-draw

method via the CRLB for an initial estimate of

our track. We developed a motion model for our

moving targets and used a Kalman tracker for tracking

detected targets. If tracked targets were not a priority,

we developed an adaptive search-only beamsteering

strategy to match the search area uncertainty, with

BPE as a measure of uncertainty of an area covered

by the antenna array’s main beamwidth. If tracked

targets had some degree of priority, then a strategy

was developed such that the target track quality

could be maintained while searching for targets.

We obtained TTE for a tracked target, the entropy

value quantifying the uncertainty of a track. The

TTE was a function of the target’s SCM. Via a

“novel” approach of using a priority dial − or scale

between the two competing search-and-track needs, a

way to compromise between the two priorities was

developed. Once a priority value was dictated by

a system, the CRN’s spatial illumination strategy

was matched to the priority needs as quantified by

the search-and-track uncertainties, i.e., the resulting

adaptive search-and-track beamsteering strategy

compromised between searching for targets and

tracking detected targets. Various examples with

differing scenario sizes were presented. Finally,

to show detection performance for our CRN,

we compared performance of the CRN with the

performance of a two-platform radar system that

employed the traditional rasterized beamsteering

pattern. In our Monte Carlo simulations, we ensured

that both had the same update illumination rate for

a tracked target for fair comparison. It was shown

that the CRN utilizing the adaptive search-and-track

beamsteering strategy outperformed the system that

utilized the traditional beamsteering pattern.
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APPENDIX. MLE OF TARGET PARAMETERS

Recall, for a single measurement, that the

reflection coefficient is constant and that S(kx,ky) is

fixed such that they can be scaled into s(kx,dx,ky),
where the pdf of the measurement z with this target
signal is

p(z;kx,dx,ky)

=
1

¼N det(R)
exp[¡(z¡ s(kx,dx,ky))HR¡1(z¡ s(kx,dx,ky))]:

(37)

We desire to find estimates for kx,dx,ky that maximize

the above likelihood. It is sometimes convenient to

take the ln(¢) of the pdf above such that
ln(p(z;kx,dx,ky))

= ln

μ
1

¼N det(R)

¶
¡ [(z¡ s(kx,dx,ky))HR¡1(z¡ s(kx,dx,ky))]:

(38)

Since ln(¢) is a monotonic increasing function, we
may maximize the log-likelihood. Moreover, the first

term of the right-hand side is a constant and will not

affect maximization if ignored. Then, we desire to

evaluate

max
kx,dx,ky

¡[(z¡ s(kx,dx,ky))HR¡1(z¡ s(kx,dx,ky))]

(39)
which is equivalent to

min
kx,dx,ky

[(z¡ s(kx,dx,ky))HR¡1(z¡ s(kx,dx,ky))]:
(40)

The above expression expands to

min
kx ,dx ,ky

[zHR¡1z¡ zHR¡1s(kx,dx,ky)¡ s(kx,dx,ky)HR¡1z
+ s(kx,dx,ky)

HR¡1s(kx,dx,ky)]: (41)

Notice that the first term does not depend on the

target frequencies and that the last term is constant

such that the minimization can be evaluated with the

middle terms, which simplifies to

min
kx,dx,ky

[RefzHR¡1s(kx,dx,ky)g]: (42)
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