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I. INTRODUCTION

Increasingly stringent regulations on bandwidth
allocation and management are at odds with growing
expectations for future radar system capabilities [1, 2]. In
radar systems utilizing coded waveforms with wide
instantaneous bandwidths, the fidelity of the transmitted
signal is crucial to the ultimate fidelity of the analyzed
results of the received signal, as well as the amount of
spectral leakage present in the transmitted signal. With
this in mind, the transmit chain of a radar system,
specifically, the main high-power amplifier (HPA), must
be fully characterized so that the final transmitted
waveform can be known relative to the desired output
waveform. However, physical HPAs exhibit nonlinear
behavior over their input power range, which becomes
more extreme as the amplifier nears its compression
region, where the power-added efficiency of the amplifier
is maximized [3–5]. In addition, this nonlinear behavior
also varies as a function of input frequency. As a result,
HPA modeling can take several forms. The Volterra series
is a convenient and compact mathematical model that is
capable of modeling systems with both nonlinear behavior
and memory effects [6–9]. Nonlinear variations over
frequency can be viewed, and thus modeled, as a result of
memory effects. With certain assumptions about the
system to be modeled, even more compact forms of the
Volterra model can be applied. One of these models that is
convenient for use with nonlinear and memory-dependent
systems with complex input and output data is the memory
polynomial (MP) model. Utilizing the MP model, it is
possible to accurately model nonlinear behavior and
nonlinear variation across an input frequency range.

While knowledge of the actual, distorted output
waveform is useful in and of itself, it would be better to
use this knowledge to alter the input waveform so that the
final distorted output waveform is equal to the desired
waveform. The inversion of the HPA model for the
purpose of linearizing and equalizing the total system is
known generically as predistortion [10]. Digital alteration
of an input signal so that the output distorted signal of a
system equals the true desired signal is known as digital
predistortion (DPD). The model governing DPD for a
given radar transmit chain is matched to each individual
HPA. Seeing that the DPD must be a nonlinear function of
input power and input frequency, DPD can also be
modeled with the MP model. DPD allows a given amplifier
to output signals that appear to be linearly amplified with
minimal distortion, even while the amplifier operates in its
compression region, thus maximizing power-added
efficiency and significantly reducing spectral regrowth.

Recent advancements in the field of solid-state
amplifiers have led to the practical implementation of
active array architecture [11–13]. This is in contrast to
traditional passive array architecture, where all of the
antenna’s elements are connected to one power amplifier.
Therefore, with each antenna element having its own
HPA, maximizing the utility and output of HPAs on an
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Fig. 1. Example of non-constant-modulus waveform single channel
output of wideband beamforming algorithm as shown in [19].

element-by-element basis is crucial to maximizing the
capability of the overall wideband radar system. DPD
would be ideal for use in this type of architecture, because
allowing each amplifier to operate in its compression
region without spectral spreading or distortion of the
output waveform leads to the maximization of each
amplifier’s power-added efficiency. This also allows the
amplifier to give similar output characteristics of a larger
amplifier for waveforms requiring linear amplification. By
utilizing smaller amplifiers to their full potential, benefits
are quickly recognized in lower cost, lower weight, smaller
hardware footprint, easier heat management, smaller and
less expensive power supplies, and other associated
hardware benefits. When these benefits are multiplied over
the number of antenna elements and transmit chains in a
given radar system, it can be seen that DPD can have a
tremendous effect on the utility of the overall radar system
without making drastic and expensive changes to the
system’s hardware to achieve similar performance.

While DPD has been utilized in communication
systems, as in [14–16], it does not have widespread use in
radar applications. Whereas adaptive predistortion of
unpredictable and constantly changing waveforms is not
generally needed in radar systems, DPD in radar
applications must apply over a much larger bandwidth at
higher power levels in addition to complying with
mandated lower sideband suppression than is common in
communication systems [17]. This is especially true for
wideband radar systems, which is the primary application
of this paper. Radar systems typically have a finite number
of waveforms to be used during operation, and the
waveform to be transmitted is usually known prior to
transmission. As a result, adaptive predistortion is not
needed at every transmit pulse. Instead, the predistorted
version of the input waveforms can be saved into memory
to be re-created during operation. The desired waveform is
produced at the output of the amplifier, even though this
step only requires the same amount of computational
power as re-creating the non-predistorted waveform from
memory. With this in mind, it can be seen that while
conservative implementation of DPD on an active phased
array radar requires digital waveform creation, it does not
require significant excess computational power. This
makes it attractive for modern and emerging architectures
in environments where precise spectral usage is required
[18], particularly for systems that can utilize non-
constant-modulus waveforms with broad instantaneous
bandwidth, such as multi-input–multi-output (MIMO)
radar systems, low probability of intercept (LPI) radars,

Fig. 2. Example of power out versus power in of well-behaved
narrowband and ideal amplified signals.

and synthetic aperture radar (SAR) systems utilizing
wideband beamforming. An example of a non-constant-
modulus waveform for use in a wideband beamforming
algorithm proposed by [19] is shown in Fig. 1.

II. TECHNICAL APPROACH TO MODELING
AMPLIFIER AND PREDISTORTER

A. Conceptual Approach to DPD

As was previously stated, predistortion is effectively
the inversion of a nonlinear HPA model for the purpose of
linearizing the output power versus input power relation
for the total system. To get a better understanding of what
predistortion is actually doing, visual examples will be
helpful. Output power versus input power graphs of
simulated well-behaved narrowband and measured
wideband amplifier data with overlaid ideal outputs are
shown in Fig. 2 and Fig. 3, respectively.

At its core, predistortion is essentially remapping a
given input signal to a different input signal so that when
altered by the HPA’s nonlinear distortion, the desired ideal
output signal is the result. This ideal output signal has a
linear output power versus input power relation with a
gain that matches the gain of the linear region of the
measured amplifier, as well as a uniformly flat group delay
response. Consider the simulated narrowband (i.e., single
frequency) output power versus input power graph as
shown in Fig. 2. Predistortion effectively takes the ideal
output power versus input power relationship and
carefully and intentionally rescales the input power so that
the new output power versus input power relationship
matches the measured nonlinear output power versus input
power relationship of the amplifier. This process is
relatively simple for the narrowband case: For each ideal
output power level, the same measured output power level
corresponds with only one measured input power level.
The nonlinear equation that determines the particular
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Fig. 3. Example of power out versus power in of measured wideband
and ideal amplified signals.

horizontal stretch for a given input power is the
predistortion model. Note that the maximum output power
of the ideal signal is equal to the maximum output power
of the measured signal. This means that the ideal input
signal to be predistorted must have an upper power limit
corresponding with the power that gives the maximum
output power of the measured signal when the gain of the
ideal output power versus input power relation is applied.

However, determining the predistortion model for a
given amplifier is more complicated than it first appears
due to the possibility of variation in the nonlinear behavior
of the HPA over the input frequency. The effect of this
frequency dependence is readily apparent in the measured
wideband case (40 MHz bandwidth), and can be seen in
Fig. 3 in the vertical width of the measured sample range
for a given input power. The overall shape of the output
power versus input power response samples can be
thought of as the overlap of samples from numerous
power sweeps at constant frequencies spanning the
calibration data passband (this is not the case, but it is
helpful to think of it in this way for this example). Again,
predistortion effectively takes the ideal input signal and
rescales it so that the output power versus input power
relationship matches the measured nonlinear output power
versus input power relationship of the amplifier. However,
due to the wideband nature of the input signal and the
frequency dependence of the amplifier, there is a measured
input power level range that corresponds with any desired
ideal output power level. The input power level range for a
single output power is composed of a single sample from
each of the power sweeps at different frequencies. In order
to map the ideal input signal to the correct measured input
signal, the “instantaneous” frequency of the ideal input
signal must be known. If frequency-based effects were
ignored, the vertical width of the predistorted amplified
signal would be largely unchanged from that of the
measured samples. Note that in the wideband case, the

maximum output power of the ideal signal is equal to the
maximum vertical lower bound of the measured signal,
which corresponds with the “worst-case” maximum power
for all frequencies present in the signal. This ensures that
the ideal output signal is possible to produce given the
frequency effects present in the system. Furthermore, due
to the fact that, for a given ideal input signal sample at a
given frequency, there is only one correct measured input
signal to which that point can be mapped, it is implied that
the measured signal data from which the specific
predistortion relation and model were derived must have
an output power versus input power relation that is
monotonically increasing.

It was previously stated that nonlinear variations over
frequency can be viewed, and thus modeled, as a result of
memory effects. In the equations used to model both the
nonlinear distortion of the amplifier as well as the
equations used to model the nonlinear distortion of the
predistorter, memory terms are simply terms of the causal
polynomial that are functions of one or more delayed
input signal samples. The presence of memory terms in a
model’s polynomial establishes effects within the output
signal that are dependent upon the relation between input
samples at fixed time interval differences (i.e., intervals of
the sampling rate). The relation between input samples at
fixed time interval differences can be interpreted as being
frequency related, and thus the introduction of memory
terms allows frequency-based effects to be reliably
modeled.

B. Volterra Series and MP Model

The Volterra series is useful for modeling systems with
both nonlinearities and memory effects, and it is ideal for
modeling the output of HPAs and their associated
predistortion models. The general form of the discrete
Volterra series is given by

yV (n) =
K∑

k=1

yk(n) (1)

where

yk(n) =
M−1∑
m1

· · ·
M−1∑
mk

hk(m1, . . . , mk)
k∏

l=1

x(n − ml) (2)

where yV(n) is the output sample, x(n) is the input sample,
K is the order of nonlinearity of the system, M is the order
of memory of the system, and hk(m1, . . ., mk) is a
coefficient with set values as a function of k and m1

through mk. The general form of the Volterra series is
capable of modeling nonlinear systems with memory
effects due to the extensive number of coefficients paired
with every combination of input sample and delayed input
sample combinations within the bounds of the specified
nonlinear order and memory order of the model. The
general form of the Volterra series is therefore able to
model systems with both large nonlinearities and
significant memory effects, and higher precision and more
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accurate modeling can be provided by simply raising the
nonlinear and memory orders of the model. However, the
number of coefficients, and thus computational
complexity in calculating the coefficients, increases at a
substantial rate as either the nonlinear order or the
memory order of the model is increased. With this in
mind, many simplifications of the full Volterra model,
with fewer coefficients and reduced complexity of
calculation, have been devised and studied [20–22]. One
of the simplified Volterra-based models that has had
previous success modeling physical amplifiers at complex
baseband is the memory polynomial model [20, 23–26].
The MP model is given by

y(n) =
K−1∑
k=0

M−1∑
m=0

hkmx(n − m)|x(n − m)|k (3)

where y(n) is the output sample, x(n) is the input sample,
K is the order of nonlinearity of the system, M is the order
of memory of the system, and hkm is a coefficient with set
values as a function of k and m.

Due to the MP model being linear with respect to the
coefficients, it can be represented efficiently in matrix
form. This applies both to the amplifier model and its
associated predistortion function. These matrix
representations readily allow the coefficients to be
determined for either case by using a set of measured
input and output data, as detailed herein. Because the MP
model is fundamentally composed of a summation of
coefficients that are each paired with delayed powers of
the input waveform, it can be represented efficiently in
matrix form as y = XθMP. This matrix representation can
be expanded to be shown as

y =

⎡
⎢⎣

y(M)
...

y(N)

⎤
⎥⎦ = X

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h00

...

h0m

...

hk0

...

hkm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

X =

⎡
⎢⎢⎣

x(M) · · · x(1) · · · x(M)|x(M)|k · · · x(1)|x(1)|k
...

...
...

...

x(N) · · · x(N − M + 1) · · · x(N − M + 1)|x(N − M + 1)k · · · x(N − M + 1)|x(N − M + 1)|k

⎤
⎥⎥⎦

(5)

where the [A × B] matrix X is called the delay matrix and
is shown partially expanded in (5), y is an [A × 1] column
vector containing the calculated outputs of the MP model,

and θMP is a [B × 1] column vector containing all the
coefficients hkm. It should be noted that N is equal to the
length of the input vector x, and B is equal to the number
of coefficients for a given nonlinear order and memory
order of the MP model, while A = N − (M − 1), which
ensures that any generated output in y was calculated with
populated values for the necessary delayed input terms.
The delay matrix is composed of the varying combinations
of input terms that are both delayed and not delayed
associated with the B coefficients for each of the A output
samples to be created. This means that the delay matrix
can be created given only the input sample array and the
order of nonlinearity and memory order of the MP model
to be used. The [B × 1] model coefficient column vector
θMP contains the unknown coefficients hkm, which
collectively capture HPA behavior over the power and
frequency ranges of interest. High-fidelity measurements
of the amplifier output, excited by a strategically chosen
and well-known input signal, are required to estimate the
coefficients in θMP. This pair of data is known as the
calibration data set, and it should be chosen so that the
input signal excites across the entire bandwidth and power
ranges over which the amplifier is to be modeled [27]. A
good way to capture as much of the nonlinearity effects
and memory effects as possible is to generate a random
signal spanning the desired power range before filtering
the signal to the desired bandwidth. This random signal
approach creates many combinations of input power and
frequencies that help to excite the amplifier in as many
different states as possible, leading to more behavior of the
amplifier being recorded. As a result, when using the
frequency-filtered random signal approach to generating
calibration data, the longer the signal is in time, the better
the system will be characterized. With this in mind, it is
useful to choose calibration data containing a large
number of sample points, although the length of the
calibration input signal is practically limited by the
computational power needed to analyze the calibration
data when calculating the MP model coefficients. Once a
suitable calibration data set is acquired for an HPA, and
the order of nonlinearity and order of memory for the MP
model are chosen, the coefficient column vector θMP can
be calculated. This is accomplished by minimizing the
squared error with respect to the coefficient vector, where

the error is defined as the difference between the
calculated calibration output samples and the measured
calibration output samples. This least-squares
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minimization problem is shown as

min
θMP

‖ycal − XcalθMP ‖2

= min
θMP

[
yH

calycal − yH
calXcalθMP

− θH
MP XH

calycal + θH
MP XH

calXcalθMP

]
(6)

where ycal is the measured output signal column vector of
the calibration data, Xcal is the delay matrix formed by the
calibration data input signal xcal, and [·]H is the complex
conjugate transpose operator. Setting the derivative of (6)
equal to zero and solving for θMP yield the least-squares
solution, shown as

θMP = (XH
calXcal)

−1XH
calycal (7)

This well-known solution is referred to as the
Moore-Penrose pseudoinverse [28, 29]. Once the
coefficients of the MP model have been found, if adequate
values for the order of nonlinearity and order of memory
were selected, and the range of input power levels and
range of frequencies present in an input signal array fall
within those represented by the calibration data input
signal, then the realistic output of the HPA can be
simulated. It should be noted that if θMP remains
unchanged throughout simulations following calibration,
the method used to assemble the calibration data delay
matrix given the calibration data’s input signal should be
used to assemble all future delay matrices given a desired
input signal. This will ensure that the MP model
coefficients for the given model are always correctly
paired with their associated delayed and nondelayed input
signal combinations.

It is desired not only to create a realistic model of the
HPA, but also a model of an associated predistortion
function that can be used in conjunction with the HPA to
create an overall linearly behaving system. More
specifically, when the DPD is paired with the HPA, the
desired signal input into the DPD will be reproduced at the
output of the HPA multiplied only by the gain
corresponding with the linear region of the HPA.
Therefore, the model of the DPD is basically an inverse of
the model of the HPA. Due to the HPA exhibiting both
nonlinearities and memory effects, the DPD will need to
account for both nonlinearities and memory effects.
However, because the HPA is successfully modeled by the
MP model, this also means that the HPA’s associated DPD
can also be successfully modeled using the MP model,
given by y = XθPD, where y is the DPD output signal
column vector, X is the delay matrix formed by the DPD
input signal, and θPD is a column vector containing all the
MP model coefficients of the DPD. The order of
nonlinearity and order of memory for the DPD may differ
from the order of nonlinearity and order of memory used
in the model of the HPA. The coefficients of the MP model
for the DPD can be calculated in a similar way as the
method used to find θMP using the Moore-Penrose
pseudoinverse and a set of calibration data. In order to

calculate the values of the coefficient column vector θPD

so that the DPD will be a match with the given amplifier,
the same set of calibration data is used, but it is scaled and
used in reverse order. The calibration data input signal
column vector xcal remains unscaled, but the calibration
data output signal ycal is rescaled so that, when multiplied
by the HPA’s linear region gain, the maximum magnitude
equals the maximum magnitude of the measured
calibration data input signal. The Moore-Penrose
pseudoinverse is executed, and the coefficient column
vector θPD is found by

θPD = (YH
calYcal)

−1YH
calxcal (8)

where Ycal is the delay matrix formed by the rescaled
calibration data output signal ycal. Once the coefficients of
the MP model for the DPD have been found, if adequate
order of nonlinearity and order of memory were selected,
and the range of input power levels and range of
frequencies present in the input signal array fall within
those allowed by the calibration data, then the necessary
predistorted signal can be simulated. It should be noted
that the allowed range of frequencies for the input signal is
equal to the range of frequencies represented by the
calibration data. However, the allowed range of
amplitudes is limited by the maximum magnitude of the
rescaled calibration data output signal ycal that was used to
solve for θPD, which was previously decided to be the
magnitude that, when multiplied by the HPA’s linear
region gain, equals the maximum magnitude of the
calibration data input signal. It should also be noted that in
the way the DPD coefficient column vector θPD was
found, these coefficients are actually the necessary
coefficients for a MP model postinverse filter. However,
due to the inherent quality of the Volterra series in which
the pth order postinverse of a Volterra series is equal to the
pth order pre-inverse of a Volterra series, the coefficients
found for the postinverse model can be used as the
coefficients of a pre-inverse model instead [30]. Therefore,
by using two different realizations of the MP model
simplification of the Volterra series and a single set of
calibration data, it is possible to not only successfully
model the output of a HPA given an input signal, but it is
also possible to find the necessary DPD model that, when
used in series with the HPA, will make the overall transmit
chain behave as a linear system.

In summary, the DPD process requires a measured
set of calibration data with a known linear region,
predefined orders of nonlinearity and memory for both
the amplifier and DPD models, and a desired input signal.
The DPD process results in the creation of the amplifier
and DPD model coefficients, predistorted input
waveform, simulated predistorted amplified output
waveform, and the measured predistorted amplified output
waveform. This process is visually summarized
in Fig. 4.
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Fig. 4. Flow chart summary of DPD process.

C. Weighting for Numerical Stability of Least-Squares
Model Solution

When the specified order of nonlinearity of the HPA or
DPD model is large, numerical instabilities can begin to
arise when solving for the model coefficients by executing
the Moore-Penrose pseudoinverse. While other
approaches have been proposed to make the pseudoinverse
more numerically stable for large-order polynomials by
modifying the MP model itself [31], it was decided in this
context to normalize the delay matrices of both the HPA
model and the DPD model by dividing each individual
term of the delay matrix by the maximum magnitude of
the calibration input signal for that particular delay matrix
to the power corresponding with the order of nonlinearity
of the particular term in the delay matrix. This can be
represented by introducing a weighting matrix W,
substituting Xw for X in (4) and (7), where

Xw = XW (9)

Similarly for (8), Ycal,w is substituted for Ycal, where
Ycal,w = YcalW. The elements Wi,j of the square weighting
matrix W of dimensions [B × B] are represented by

Wi,j =
⎧⎨
⎩

1

(xcal,max)Kj
for i = j

0 for i �= j

(10)

where xcal,max is the maximum instantaneous magnitude
present in the calibration data signal used to assemble the

delay matrix, and Kj is the order of nonlinearity associated
with the jth coefficient term in the selected MP model.

This results in each individual term of the delay matrix
being scaled so that, for a given input time signal, the
range of typical values spanned by the varying nonlinear
terms is reduced by several orders of magnitude. As a
result, when this normalized delay matrix is used in the
Moore-Penrose pseudoinverse for finding the coefficients
of the model, the least-squares solution for the coefficients
is produced with a much more balanced importance being
placed on each term as the order of nonlinearity associated
with that term changes. This normalization process
effectively creates a weighted least-squares approach, with
more accurate and numerically stable HPA simulation and
DPD results than previous approaches, such as [9].

The stability of the Moore-Penrose pseudoinverse can
be inspected quantitatively by the matrix condition
number, more specifically, the condition number of the
delay matrix. The condition number is a common linear
algebra tool for examining the sensitivity of a solution for
a system of linear equations to error [32–34]. In the case
of the amplifier MP model, the condition number can be
thought of as the maximum ratio of the relative error in the
coefficients divided by the relative error in the measured
output signal. A matrix is said to be well conditioned if the
condition number is close to 1, and it is said to be ill
conditioned if the condition number is extremely large.
Using a set of calibration data measured through a
Specwave QBH-7-4012 amplifier, the condition number of
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Fig. 5. Delay matrix condition number for amplifier and DPD MP
models as a function of number of model terms. Note that the condition

numbers resulting from the weighted approach are more stable regardless
of scaling.

the delay matrix was calculated using both the unweighted
and weighted least-squares approaches. In order to
examine various ranges of possible calibration data input
values and their effect on the calculated condition number,
the input and output calibration data were rescaled at
decade increments from −30 dB to +30 dB. At each level
of scaled calibration data, the delay matrix condition
number was calculated for various model parameters,
specifically, for all permutations of models with order of
nonlinearity equal to three, five, seven, or nine and with
order of memory equal to one, three, or five. These
calculations were made for both the amplifier and DPD
delay matrices. The comparison between the weighted and
unweighted approaches can be seen in Fig. 5. It is
observed that for both the amplifier and DPD cases, the
weighted least-squares–based approach results in
relatively low condition numbers that remain very stable
as the magnitude of the calibration data is altered, whereas
the unweighted least-squares–based approach can have
largely varying condition numbers that are nearly always
orders of magnitude larger than those computed with the
weighted approach.

In general, for both the weighted and unweighted
approaches, the matrix condition number increases as the
number of coefficients in the MP model increases. Our
successfully measured results utilizing the weighted
least-squares approach, presented later in section III,
confirm our theoretical formulations.

D. Bayesian Analysis for Model Parameter Refinement
and Slowly Changing Systems

While the Moore-Penrose pseudoinverse method of
finding the least-squares solution was used in the previous
sections for finding the coefficient values for both the
amplifier model and the predistortion function, there are
other methods available for calculating nonlinear model
parameters that offer benefits [35, 36]. One of these
methods is Bayesian analysis utilizing Gibbs sampling,
which is a form of the Markov chain Monte-Carlo
(MCMC) algorithm that approximates the multivariate
probability distribution of the model parameters. Whereas
the Moore-Penrose least-squares solution uses all
available measured calibration data in each execution to
find parameter values, Bayesian analysis uses only the
latest acquired calibration set of data in conjunction with a
multivariate probability containing all prior knowledge of
the system, known as a prior, to construct probabilities of
the model parameters. Once the posterior conditional
probabilities of the parameters are found, the mean of each
is calculated to give point estimates for the parameters.
Under the belief that the best model parameters are chosen
when the greatest amount of calibration data is utilized,
the Bayesian approach offers a significant computational
advantage if the system continually acquires calibration
data throughout operation. In addition, the Bayesian
approach can result in parameters that are capable of
accurately tracking the best underlying model in the
presence of slowly varying system conditions [37]. The
inherent ability of the Bayesian approach to correctly alter
amplified nonlinear model parameters as the system
changes is in contrast to the previous least-squares only
approach, such as [38, 39], which, in a changing system
environment with continuous training data acquisition, can
only result in a parameter set that is the least-squares
solution to the system state that is essentially the average
of all measured system states, rather than the current
system state.

The model used for Bayesian analysis is based on the
unweighted MP model shown in (3), but due to the Gibbs
sampling program operating only on real numbers, the
original complex MP model is converted into two real
equations representing the real and imaginary components
individually. These equations are shown as

ŷr [n] =
K−1∑
k=0

M−1∑
m=0

((
hkm,rxcal,r [n − m] − hkm,ixcal,i[n − m]

)

×
√

x2
cal,r [n − m] + x2

cal,i[n − m]
k)

(11)

and

ŷi[n] =
K−1∑
k=0

M−1∑
m=0

((
hkm,ixcal,r [n − m] + hkm,rxcal,i[n − m]

)

×
√

x2
cal,r [n − m] + x2

cal,i[n − m]
k)

(12)
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where ŷ[n] is the calculated MP model values with
ŷ[n] = ŷr[n] + j ŷ i[n], the measured input calibration
signal xcal[n] = xcal,r[n] + j xcal,i[n], and the complex MP
model coefficients hkm = hkm,r + jhkm,i. The measured
output calibration signal is defined to be the result of a
compound normal distribution, shown as

ycal,r [n] ∼ N(μ = ŷr [n], τ = τy,r ) (13)

and

ycal,i[n] ∼ N(μ = ŷi[n], τ = τy,i) (14)

where the measured output calibration signal ycal[n] =
ycal,r[n] + j ycal,i[n], the distribution’s mean is the MP
model value ŷ[n] calculated using the measured input
calibration signal, and the distribution’s precision τ is a
model variable itself. Once the multivariate posterior
probability distribution of the model’s variables has been
calculated, the point estimate of each conditional
probability is calculated, giving the MP model coefficient
estimates as well as the precision of the compound normal
distribution approximating the model about the measured
data. The distribution approximating the model output is
compound normally distributed due to the precision itself
being an unknown distribution.

A single set of calibration data with a bandwidth of
40 MHz was used, implying the underlying assumption of
a completely steady-state system. Additionally, all
parameters for the Bayesian algorithm were initialized
with uninformative priors, and it was found that the
weighted least-squares approach generated model
parameters that had slightly better results than those
generated by the Bayesian-generated coefficients. This
resulted in amplifier models with results closer to
measured values and DPD models that resulted in less
spectral spreading. However, when amplifier
characteristics changed due to changing unmodeled
system parameters, such as the temperature of the
amplifier, the Bayesian-generated coefficients gave much
more satisfactory results because the system was able to
track with the changes while still incorporating and adding
to historical data about the amplifier. These results are
seen in Fig. 6, which shows the K = 9, M = 5 amplifier
models generated by both the least-squares and Bayesian
analysis approaches as the amplifier undergoes a
temperature shift, with each subsequent row representing a
progression in amplifier state. The predicted output power
versus input power for both approaches is plotted in
addition to the current measured amplifier output power
versus input power in the left column of Fig. 6. The
difference between both modeled amplifier output powers
and the current measured amplifier output power is plotted
in the right column of Fig. 6. It can be easily seen that the
difference between the measured and modeled results is
less for the least-squares approach when the system is
stable, but it is less for the Bayesian-generated approach
as the system changes. The calibration data set was
formed by concatenating four calibration data sets that
were each recorded during the warm-up period of a

Specwave QBH-7-4012 amplifier, with the four 40 MHz
bandwidth measurements taken at delays of 0, 1, 5, and 10
min after amplifier activation, respectively.

III. PREDISTORTION OF DIGITALLY CODED
WAVEFORMS

Simulations and tests were conducted on a
representative non-constant-modulus waveform that
spanned the power and bandwidth of a possible
wideband radar waveform, as well as a
constant-modulus–constrained coded waveform typical of
a wideband radar. The P4 coded waveform was chosen to
represent a typical wideband constant-modulus radar
waveform, because it is a polyphase code with broad
instantaneous bandwidth. Although polyphase codes have
been known for some time, P4 codes have gained in
popularity over the last several years because they are
efficient to digitally synthesize and have unique
applications in modern radars, for example [40–42] and
others. New classes of good polyphase code sets can be
generated using pieces of P4 polyphase codes, and these
code sets are suited for many applications, including
orthogonal netted radar systems (ONRS) and MIMO
radars [41]. Under the cross-correlation elimination (CCE)
condition, many monostatic radar waveforms can be
directly used in the MIMO radar system, such as P4 codes
[42]. As noted by Lewis and Kretschmer [43], the P4
polyphase pulse compression code is very Doppler
tolerant, can provide large pulse compression ratios, and is
tolerant of precompression bandwidth limitations.
Therefore, the P4 code and its results represent any typical
wideband constant-modulus radar waveform with wide
instantaneous bandwidth, including, but not limited to,
Frank, P1, P2, P3, biphase, or polyphase modulated
waveforms.

The non-constant-modulus waveform chosen to
represent any possible wideband radar waveform within
the system’s filtered bandwidth range consisted of a
randomly generated complex baseband signal filtered to
the bandwidth at which the system was to be
characterized. Although the available test setup hardware
limited the calibration waveform to a relative bandwidth
that was not overly large, the chosen bandwidth was
sufficient to capture wideband effects of the amplifier. This
is demonstrated by the large vertical width of the output
power for a single input power as seen in section IIID.
Therefore, this randomly generated code and its results
represent any radar waveform with wide instantaneous
bandwidth and non-constant modulus. Waveforms with
these attributes could be encountered in more specialized
and advanced radar system roles, such as MIMO systems,
LPI radars, and SAR wideband beamforming applications.
Due to the assumption of a steady-state system, these
waveforms were predistorted utilizing the weighted
least-squares–based method described in section III, and
the simulated and measured results were compared to the
respective non-predistorted cases. This was done to test
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Fig. 6. Measured amplifier data versus least-squares and Bayesian model results.

the ability of the DPD to match the final distorted output
waveform to the desired output waveform in a steady-state
system, and to quantify the effect on spectral spreading
behavior while the amplifier operated in its compression
region. Through trial and error, it was found that K = 9

and M = 5 for the MP DPD orders provided optimal
performance for the given test data sets.

For both the constant-modulus and non-constant-
modulus waveforms tests, it was expected that the
simulated predistorted results would have slightly better
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Fig. 7. Power spectral density of simulated predistorted and
non-predistorted P4-coded waveforms after HPA distortion.

suppressed spectral spreading than their physically
measured counterparts. This is due to the fact that the
predistorted and non-predistorted signals in a physically
measured test are being applied to a real system with
nonlinear characteristics, rather than a known model
approximating a system with nonlinear characteristics.
Therefore, when a simulation is executed, the exact
nonlinear behavior of the simulated amplifier is already
known, whereas the measured test will have some element
of noise or unmodeled and unaccounted for effect present
simply due to the fact that a physical amplifier’s nonlinear
behavior cannot be perfectly known. This expectation was
confirmed, and for both the constant-modulus and
non-constant-modulus waveform tests, the magnitude of
the spectral spreading was slightly lower for the simulated
case than for the respective physically measured case.

A. P4 Waveform Simulation

A simulated system was analyzed using calibration
data measured through a Specwave QBH-7-4012 amplifier
and a constant-modulus, 20 MHz, P4-coded waveform
filtered to a bandwidth of 40 MHz. A 40 MHz filter was
chosen in order to capture the null-to-null waveform
information. The waveforms had a pulse width of 84 μs
and a maximum input voltage equal to the maximum
allowed magnitude as specified by analysis of the
calibration data. Using an HPA model with K = 9 and
M = 5, it was seen that the digitally predistorted signal
was nearly an exact match to the desired output signal.
The non-predistorted signal, which was equal to the DPD
input signal and scaled so that its maximum magnitude
corresponded with the predistorted signal’s maximum
magnitude, experienced nonlinear distortion and
compression across the span of the waveform. The
spectral spreading of the non-predistorted output signal
was much larger than that of the predistorted signal after
being distorted by the HPA. This is seen in Fig. 7. With

Fig. 8. Power spectral density of measured predistorted and
non-predistorted P4-coded waveforms after HPA distortion.

these results in mind, it can be seen that using the DPD
model on the input waveform leads to a much more
desirable simulated result, closely matching the ideal
output signal, and with a much smaller degree of spectral
spreading than would be present without DPD.

B. P4 Waveform Test in Hardware

The same P4-coded waveform used in simulation was
generated with a center frequency of 1.2 GHz and
amplified through a Specwave QBH-7-4012 amplifier and
tested both with and without DPD. Using a pulse width of
84 μs and a maximum input voltage equal to the maximum
allowed magnitude as specified by analysis of the
calibration data, Fig. 8 shows that the digitally predistorted
signal had much lower measured spectral spreading than
the non-predistorted signal. This demonstrates DPD’s
potential impact on modern wideband radar signals, where
high-gain systems utilizing waveforms with broad
instantaneous frequency can be predistorted to have much
improved spectral characteristics.

C. Non-Constant-Modulus Waveform Simulation

A simulated system was analyzed using calibration
data measured through a Specwave QBH-7-4012 amplifier
and a representative non-constant-modulus test signal
composed of a randomly generated complex baseband
signal filtered to a bandwidth of 40 MHz, a pulse width of
25 μs, and a maximum input voltage equal to the
maximum allowed magnitude as specified by analysis of
the calibration data. Using an HPA model with K = 9 and
M = 5, it was seen that the digitally predistorted signal
was nearly an exact match to the desired output signal.
However, the non-predistorted signal, which was equal to
the DPD input signal scaled so that its maximum
magnitude corresponded with the predistorted signal’s
maximum magnitude, experienced nonlinear distortion
and compression across the span of the waveform. The
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Fig. 9. Power spectral density of simulated predistorted and
non-predistorted signals after HPA distortion.

spectral spreading of the non-predistorted output signal
was also much larger than that of the predistorted signal
after being distorted by the HPA. This is seen in Fig. 9.
With these results in mind, it can be seen once again that
using the DPD model on the input waveform leads to a
much more desirable simulated result, closely matching
the ideal output signal, and with a much smaller degree of
spectral spreading than would be present without DPD.

D. Non-Constant-Modulus Waveform Test in Hardware

The same non-constant-modulus representative test
signal used in simulation was generated with a center
frequency of 1.2 GHz and amplified through a Specwave
QBH-7-4012 amplifier and tested both with and without
DPD. Using a pulse width of 25 μs and a maximum input
voltage equal to the maximum allowed magnitude as
specified by analysis of the calibration data, Fig. 10 shows
that the digitally predistorted signal had much lower
measured spectral spreading than the non-predistorted
signal.

Fig. 11 demonstrates that the measured predistorted
signal closely matches the ideal linear gain across the
output power range. The large vertical width of the
measured non-predistorted signal for a given input power
is due to the wideband nature of the waveform in
conjunction with the frequency dependency of the
amplifier. The vertical narrowing of the predistorted signal
is due to frequency dependency correction, demonstrating
that the order of memory chosen for the model is
sufficient to correct the system’s wideband effects. This
frequency dependency correction is also apparent when
comparing the passband group delay of the measured
digitally predistorted signal to that of the measured
non-predistorted signal, as seen in Fig. 12.

While the particular amplifier under test had an overall
relatively flat group delay response over the given
frequency range, there was still a fair amount of variance

Fig. 10. Power spectral density of measured predistorted and
non-predistorted signals after HPA distortion.

Fig. 11. Power out versus power in of measured predistorted and
non-predistorted signals after HPA distortion.

present. The predistorted signal maintained the overall flat
group delay response in addition to significantly
suppressing the variance throughout the passband, thus
significantly improving the accuracy of the overall
predistorted system. By producing a linear output power
versus input power response, as well as a flat group delay
response in the passband, the predistortion approach
presented here is shown to be able to accurately reproduce
a desired complex baseband waveform. These results,
found using a wideband non-constant-modulus waveform
with broad instantaneous bandwidth, verify that the DPD
approach presented here is not constrained to the
traditional constant-modulus class of radar waveforms.
This opens the possibility of significantly improved
generated signal fidelity and greatly reduced spectral
leakage in modern and emerging broadband radar systems
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Fig. 12. Passband group delay of measured predistorted and
non-predistorted signals after HPA distortion.

that may be dependent upon non-constant-modulus
waveforms, such as MIMO radar systems, LPI radars, and
SAR systems utilizing wideband beamforming.

IV. CONCLUSION

In conclusion, it has been shown that the Volterra
series, and more specifically the MP model, is able to
accurately model the nonlinear effects and memory effects
of both high-power amplifiers and their associated
predistortion models in wideband radar systems. The
predistortion model can be implemented digitally in a
system and shows potential for significant improvements
in radar spectral performance and overall waveform
fidelity. These improvements have significant potential
impact when used in conjunction with phased array radar
architectures utilizing solid-state amplifiers and waveform
generators at every antenna element. In the past,
least-squares approaches have been shown to be useful to
solve DPD model parameters, primarily within the
communication community. However, this paper offers a
new weighted least-squares approach for wideband radar
signals that is more numerically stable. The second
technical contribution of this paper is, that for the first
time, a Bayesian approach is proposed that allows the
models to track slowly changing system parameters to
maintain the best current model. Laboratory testing has
confirmed the efficacy of this approach. When system data
are continuously recorded for system characterization, the
Bayesian approach offers long-term computational
benefits. DPD allows the radar system to linearly amplify
and transmit waveforms over the entire HPA output power
range, maximizing power-added efficiency, minimizing
spectral spreading, and providing overall performance
similar to that of a much larger and more costly radar
system that does not utilize DPD. These qualities make
DPD a strong contender not only for phased array radar

systems, but also for modern radar systems that
require high-fidelity generation of eccentric or
non-constant-modulus waveforms, such as MIMO radar
systems, LPI radars, and SAR systems utilizing wideband
beamforming.
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