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In this paper, we consider the application of compressive sensing (CS) to radar remote sensing applications.
We survey a suite of practical system-level issues related to the compression of radar measurements, and
we advocate the consideration of these issues by researchers exploring potential gains of CS in radar
applications. We also give abbreviated examples of decades-old radio-frequency (RF) practices that
already embody elements of CS for relevant applications. In addition to the cautionary implications
of system-level issues and historical precedents, we identify several promising results that RF practi-
tioners may gain from the recent explosion of CS literature. © 2015 Optical Society of America
OCIS codes: (280.0280) Remote sensing and sensors; (280.5600) Radar; (100.3200) Inverse scattering;
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1. Introduction

Compressed sensing is an elegant and appealing col-
lection of results from applied mathematics, statis-
tics, and numerical optimization. The burgeoning
literature is nowmoving into its second decade under
the names “compressed” or “compressive” sensing
and has garnered attention across many application
domains, including radar sensing. Initial compres-
sive sensing (CS) studies for radar application have
necessarily been limited in scope, anecdotal, and
typically qualitative. For an evolving field seeking
transformative impact in engineering application,
this paper offers a brief tutorial essay with the aim
of identifying practical considerations necessary for a
balanced assessment of compressive sensing applied
to radar systems.

From the perspective of system performance and
practical implementation, a number of issues are
deserving of methodical evaluation as CS studies
evolve from anecdote to application:

1. Compressive data acquisition suffers from
signal-to-noise ratio (SNR) loss; for a radar

application with performance limited by thermal
noise at the receiver, any SNR loss may be
unacceptable.

2. Nonlinear processing in CS inverts an as-
sumed system model; uncalibrated imperfections
in the system model effectively contribute additional
noise power to the thermal noise physically present
in the system. Examples in radar sensing include
imperfect calibration of antenna responses across
frequency, polarization, and angle; amplifier nonli-
nearities; distributed clutter; and internal target
motion.

3. Radar data are, in many applications, not com-
pressible. For example, in air-to-ground radar imag-
ing, the raw phase history data admit approximately
2∶1 lossless compression, and up to 8∶1 lossy com-
pression when limiting image degradation to one
point on the NIRS scale. Thus, radar data, in many
applications, have high entropy.

4. The nonlinear processing intrinsic to CS yields
image artifacts that may confound both image
analysts and existing automated exploitation algo-
rithms; in contrast, users understand and accept
the structured and predictable artifacts of linear
processing. Moreover, the nonlinear processing
intrinsic to CS may yield output statistics that are

1559-128X/15/0800C1-13$15.00/0
© 2015 Optical Society of America

10 March 2015 / Vol. 54, No. 8 / APPLIED OPTICS C1

http://dx.doi.org/10.1364/AO.54.0000C1


difficult to predict or estimate, thereby degrading
performance in detection and tracking applications.

5. Physical parameters relevant to radio-
frequency (RF) sensing, such as delay, Doppler
frequency, and angle of arrival, are continuous
parameters. CS theory, on the other hand, requires
a known fixed grid of parameter values. The mis-
match between grid points and actual parameter
values destroys sparsity.

6. Putative CS gains must be fairly benchmarked
to existing practice and measured in terms of
reduced size, weight, and power or cost (SWaP-C).
Hardware requirements of proposed data acquisition
should be considered and compared to existing sys-
tems. Seven decades of RF engineering practice have
yielded system designs that may already exploit
signal parsimony to improve SWaP-C. Two generic
examples are sparse arrays, which provide a large
aperture with reduced hardware costs, and stretch
processing of linear frequency-modulated (LFM)
waveforms, which reduces analog-to-digital conver-
sion bandwidth far below Nyquist rates. Addition-
ally, various RF practices have for decades already
embodied the nonuniform subsampling, low-coherence
measurement operators, and l1 regularization or
greedy optimization algorithms that characterize
much of the CS literature.

On the one hand, very few published studies pro-
vide quantifiable system-level benefits of CS for
radar in terms of SWaP-C, area under receiver oper-
ating characteristic curve, parameter estimation er-
ror variance, classification rate, etc. Instead, studies
typically demonstrate qualitative assessment of sig-
nal or image reconstruction and omit comparison to
existing RF engineering practice. On the other hand,
there have been isolated demonstrations that seem
promising. Some quantities of interest, such as air-
craft positions at altitude in a ground-to-air surveil-
lance application or temporal changes in a scene, are
quite compressible. Nonuniform sparse sampling of
an aperture, combined with nonlinear processing,
can provide low side-lobes, compared to matched fil-
tering, and, with sufficient SNR, parameter accuracy
can exceed the diffraction limit.

In the following sections, we briefly discuss the six
cautionary issues listed above, with an eye toward
potential impacts on future systems. In addition to
the cautionary discussion of issues, we also highlight
several promising results and indirect benefits of
CS research for radar systems. This brief essay
cannot offer a comprehensive survey of the large lit-
erature; instead, we seek to enumerate issues and
aim only to be representative in characterizing
recent literature. Related survey articles have ap-
peared elsewhere [1,2,3,4,5].

The paper is organized as follows. In Section 2 we
briefly define CS for the purposes of this paper.
Section 3 provides a nominal radar measurement
model and relates it to a standard CS formulation.
In Section 4 we elaborate on the six system issues
enumerated above; for the case in which parameter

estimation is the goal, we employ the familiar
Cramèr–Rao lower bound to highlight the role of
SNR in a system-level evaluation of CS. Section 5
briefly points to promising results and benefits de-
rived from the CS literature. Conclusions are sum-
marized in Section 6.

2. Compressive Sensing

For the purposes of this paper what do we mean by
“CS?”The literature is extremely large and continues
to grow, but here we invoke four defining compo-
nents: sparsity, incoherent linear measurements,
convex optimization, and provably stable recovery.
Consider the recovery of a vector f ∈ CN fromM < N
noise-corrupted linear measurements, y � Φf � n.
The problem is ill-posed due to the nontrivial null-
space of the measurement operator Φ. However, sup-
pose f is a priori assumed to be parsimoniously
represented in some basis, i.e., f � Ψx. The vector x
is said to be s-sparse if it has s or fewer nonzero
entries. In practice, x may be only approximately
s-sparse; so, for any x let xs denote the best s-sparse
approximation, i.e., the vector consisting of the s
largest magnitude entries from x. CS provides guar-
antees for stable recovery of an approximately sparse
x, for suitable measurement operator Φ. Define
A � ΦΨ. The M-by-N matrix A with unit-length col-
umns and ith column denoted ai has coherence μA
given by

μA � max
i≠j

jaH
i ajj: (1)

Given amatrixAwith low coherence, for recovery of x
we consider the constrained l1 minimization, a con-
vex optimization known as basis pursuit denoising
(BPDN) [6]:

x̂ � arg min
x̄

‖x̄‖1 subject to ‖y − Ax̄‖2 ≤ η: (2)

The l1 norm appearing in Eq. (2) can be viewed as a
convex relaxation of the l0 counting norm, thereby
converting the NP-hard optimization of finding the
sparsest solution into a tractable convex optimiza-
tion. The recovery of x is provably stable.

Theorem 1 [7, Thm. 2.1] Let y � Ax� n, ‖n‖2 ≤ ϵ,
2s < 1� μ−1A , and 0 < ϵ ≤ η. Then,

‖x − x̂‖2 ≤ C0�ϵ� η� � C1‖x − xs‖1; (3)

with positive constants C0, C1 depending on μA and s.
Thus, the reconstruction error energy is bounded

in Eq. (3) by two terms: the first depends on noise
energy and the second on the sparse approximation
error. The convex optimization may equivalently be
written in its dual form, yielding the least absolute
shrinkage and selection operator (LASSO) [8], which
is easily recognized as an l1-regularized least-
squares estimator:
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min
x̄

‖y − Ax̄‖22 � λ‖x̄‖1: (4)

Thus, CS gives a provable guarantee that convex
optimization faithfully recovers an approximately
s-sparse signal from about s log N incoherent (i.e.,
small μA) measurements. For design of Φ yielding
small μA, the literature generally relies on pseudo-
random sampling, for example by selecting rows of
an orthogonal matrix (e.g., Hadamard or Fourier)
uniformly and independently, or by circular convo-
lution with a random impulse response. And, the op-
timizations in Eq. (2) or Eq. (4) may equivalently be
accomplished by greedy algorithms. The ability to
recover a length-N, but sparse, vector from many
fewer than N measurements gives rise to the moni-
ker “compressive sensing.”

The estimator in Eq. (4) admits a Bayesian inter-
pretation as the maximum posterior probability
(MAP) estimate of x. In particular, the objective func-
tion is proportional to the negative log likelihood of
the data for white Gaussian noise and a Laplace
prior on x. Other, non-Laplacian Bayesian ap-
proaches to sparse signal recovery have been pro-
posed (e.g., [9,10]), and a sum of regularizers has
been widely adopted, including the so-called
“cosparse” or “analysis” model in which ‖Ψ0x‖p is
adopted to encourage sparse coefficients for the (pos-
sibly nonsquare) analysis matrix Ψ0. Further,
numerical techniques prompted by CS literature
have invigorated the development of Bayesian esti-
mation algorithms, for both MAP and minimum
mean-squared error (MMSE), which adopt sparse
priors [11,12].

3. Radar Measurement Model and Consequences

A. Projection Operator

In contrast to the standard measurement model
for CS, the best starting point for a RF CS mea-
surement model is y � Φ�f � n�, where noise is
added prior to the action of the measurement op-
erator, Φ. The physical rationale for this seemingly
minor modeling adjustment and the significant
consequences are discussed in the sequel. Consider
that RF sensing involves capture of a signal that
propagates in time and three-dimensional (3D)
space, and denote this signal as f �r; t�. The signal
has finite spatial and spectral bandwidths that set
Nyquist sampling requirements in space and time.
The signal is measured by projecting it onto a col-
lection of M measurement kernels ϕm�r; t� that
also have support in time and 3D space. We start
with the assumption that the measurement ker-
nels operate on a noisy version of the signal,
f �r; t� � n�r; t�, and will revisit the assumption
later. The expression governing the mth measure-
ment is then

ym �
Z

ϕm�r; t��f �r; t� � n�r; t��drdt: (5)

This general expression is capable of describing
the sampling operation for a variety of hardware
architectures. For example, traditional temporal
sampling of a RF receiver can be described with a
3D effective antenna aperture and a properly shifted
temporal sampling function. In this case, the mea-
surement kernel would be ϕm�r; t� � u�r�p�t − tm�,
where u�r� represents the antenna aperture func-
tion, p�t� is the temporal sampling function defined
by filters in the receive chain and the physical proc-
ess of analog-to-digital conversion, and tm is the mth
sampling time.

The antenna aperture function enforces the an-
tenna element pattern. If the antenna aperture is
small relative to the reciprocal of the signal’s spatial
bandwidth, then the element pattern has little effect
and the antenna aperture function can be approxi-
mated as a delta function at the antenna phase
center location. Likewise, the temporal sampling
function enforces receiver components such as anti-
aliasing filters. If the receiver bandwidth is larger
than the signal’s temporal bandwidth, then the tem-
poral sampling function can also be approximated as
a delta function. Under these approximations,
ϕm�r; t� � δ�r − r0�δ�t − tm�, where r0 is the antenna
location, and the mth measurement is

ym �
Z

δ�r − r0�δ�t − tm��f �r; t� � n�r; t��drdt

� f �r0; tm� � n�r0; tm�: (6)

By appropriately designing a set of sampling kernels,
Eq. (5) can be used to represent phased array anten-
nas, multichannel receiver systems, slow-time/
fast-time sampling of a radar waveform, and any
other desired RF receiver system. Here, “slow time”
refers to the time scale of multiple pulses, whereas
“fast time” refers to time shifts within a single pulse
interval.

B. Measurement Compression

As described above, compressive measurement
kernels should have low coherence with the basis
in which the signal has a sparse approximation. In-
tuitively, this requirement states that the measure-
ment kernels should not be localized in the same
basis in which the signal is sparse; otherwise, it is
likely that the localized measurement kernel will
completely miss the localized signal. Propagating
plane waves are not localized in spatial position;
therefore, it is safe to undersample the spatial field
with physically localized antennas in 3D space
(which is fortunate because it is difficult to imple-
ment arbitrary aperture functions over physically
large antennas). Spatial-domain RF compressive
sampling, therefore, has typically been envisioned
via thinned or sparse arrays, which is a form of
compression via measurement thinning or downse-
lection. Figure 1 shows several examples of
radar measurement compression via a thinned-
measurement approach.
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On the other hand, time-domain signals of interest
sometimes exist for short time durations. Therefore,
simply reducing the temporal sampling rate (or thin-
ning the temporal measurements) might not be an
effective form of compression. If the elements of the
sparse basis are modulated waveforms (as in, for ex-
ample, phase-coded or LFM radar pulses), then their
time spread might enable compression via sample
rate reduction. But if a simple sample rate reduction
means that the sampling interval is similar to or
longer than the signal’s time duration, then straight-
forward fast-time undersampling is not appropriate
and the analog time-domain signal must be modu-
lated through analog multiplication with a wideband
measurement kernel prior to sampling [13], as
shown in Fig. 2. The consequence of this behavior
is that radar slow-time measurements are usually
compressed via downselection of radar pulses [14],
while fast-time compression might be best achieved
through mixing-based compression [15]. Alterna-
tively, “fast-time compression” can also be achieved
through a stepped frequency implementation
whereby the radar emits a sequential series ofK nar-
rowband tones covering the bandwidth of interest
(see Fig. 1). As long as target transfer functions
are not sparse in the frequency domain (which they
are not), downselection-based compression can be
achieved by skipping many of the frequency steps

during the data collection [16,17]. The fundamental
tradeoff in stepped frequency systems is data collec-
tion time, which can be mitigated by a compressive
implementation that skips many of the steps.

In the above discussion, we observe two basic types
of measurement compression [18]. When the signal is
not localized in space, time, and/or temporal fre-
quency, compression can be achieved by thinning
the measurements via sparse array, reduced fast-
time sampling rate, thinned pulses, and/or thinned
frequency steps (Fig. 1). A secondmethod of compres-
sion involves modulating the signal through analog
multiplication with a wideband measurement kernel
before sampling at a reduced rate (Fig. 2). This
mixing-based compression is more in line with the
typical compression methods employed in optical
and spectral imaging applications, where it is pos-
sible to use masks, diffraction gratings, and other
optical components to implement analog-domain
mixing with spatial kernels having a wide space-
bandwidth product. In RF applications, the wave-
lengths involved make it difficult to implement
arbitrary, spatially extended measurement kernels
that spatially encode the signal over a large physical
or synthetic aperture. Hence, spatial compression
must be performed via thinned physical or synthetic
arrays, which reduces the collected signal energy
(and SNR) due to a reduced effective aperture.

C. Preprojection Noise

At first glance, it may seem strange to insist that
noise should be added to the signal before compres-
sion via downselection. We can obviously separate
the signal and noise terms in Eq. (5) to obtain an
equivalent postprojection noise model according to

ym �
Z

ϕm�r; t�f �r; t�drdt�
Z

ϕm�r; t�n�r; t�drdt

�
Z

ϕm�r; t�f �r; t�drdt� nm: (7)

While Eq. (7) is valid and may appear identical to the
usual CS model, using Eq. (7) as a starting point can
obscure important system-level factors. Such factors
include the impact of measurement kernels on the
noise correlation structure and finite transmit power
limitations that cannot be increased to compensate
for missing antenna aperture, radar pulses, or fre-
quency steps.

When beginning from the model of Eq. (5), it is
clear that the transmit power, antenna gain, noise
figure of the RF front end, and other system factors
must be carefully considered when setting the ratio
of f �r; t� to n�r; t� prior to compression. If measure-
ments are subsequently thinned, as in Fig. 1, then
signal energy is lost. If compression is obtained
through signal mixing, as in Fig. 2, then the same
analog operations that are used to encode linearly in-
dependent foldings of the wideband signal spectrum
into a relatively narrow sampling band are also ap-
plied to the full noise spectrum. Thus, mixing-based

Fig. 1. Illustration of various thinning-based compression
schemes for radar and array processing.

Fig. 2. Illustration of mixing-based compression for sub-Nyquist
A/D acquisition.
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compression causes the wideband noise spectrum to
alias into the narrow sampling band, which increases
noise power through an effect known as noise folding
[19,20]. It might even appear that one can improve
SNR by scaling the measurement operator in
Eq. (7), when in reality the expression in Eq. (5)
shows that scaling the measurement operator will
cause a proportional scaling in the noise; thus, scal-
ing the compressive measurement operator of a RF
system (if physically possible) has no effect on perfor-
mance. Using Eq. (7) as a starting point makes it too
easy to overlook these factors and may lead to
improper comparisons of system performance.

Because scaling of the measurement kernel has no
effect on system performance, we conveniently as-
sume that each measurement kernel is normalized
to unit energy. Further, from the preprojection noise
model in Eq. (5) the same noise realization is ob-
served by each of the M measurement kernels. Thus,
unlike the case of independent additive noise on each
projection, there is no SNR or information gained
from a duplicate measurement kernel, and without
loss of generality we may assume that the M mea-
surement kernels are orthogonal. Enforcing unit-
energy scaling and orthogonality on themeasurement
kernels, we arrive at an orthonormal constraint on
the measurement kernels such that

Z
ϕm�r; t�ϕ�

k�r; t�drdt �
�
0 m ≠ k
1 m � k

: (8)

Finally, we note that the typical CS model is writ-
ten in matrix-vector form. The matrix-vector form is
obtained by approximating the integral in Eq. (5)
with a summation over small intervals in space
and time. Thus, the inner product between ϕm�r; t�
and f �r; t� � n�r; t� becomes a matrix multiplication
of a row vector containing the discretized sampling
kernel and a column vector containing the discre-
tized noisy signal. The mth measurement becomes

ym �
Z

ϕm�r; t��f �r; t� � n�r; t��drdt

≈ ϕm�f � n�: (9)

Stacking the discretized versions of all M measure-
ment kernels into the M rows of a matrix Φ, the
matrix-vector version of the preprojection noise mea-
surement model is y � Φ�f � n�.
4. System-Level Issues to Consider

In this section, we elaborate on the six system issues
enumerated in Section 1. We begin with perhaps the
most critical, yet easily overlooked, issue: SNR.

A. Signal-to-Noise Ratio

Regardless of the specific receiver architecture, an
essential property of RF systems is that analog-to-
digital conversion does not take place until after
the propagating wave is transduced to an electrical
signal carried on a transmission line. For any

receiver operating above zero absolute temperature,
the signal carried on the transmission line will be
noisy. A low-noise amplifier (LNA) is usually placed
early in the receive chain in order to prevent sub-
sequent components from degrading the receiver
noise figure, but then any manipulations of the sig-
nal in subsequent components are also applied to the
noise at the output of the LNA. This has important
implications discussed below regarding SNR for com-
pressive RF systems.

One of the major functions of RF systems is signal
detection, whether it is detection of bits in a commu-
nication signal or detecting the presence of targets in
a received radar waveform. Furthermore, signal de-
tection performance is strongly affected by SNR,
which is maximized by the matched filter. In fact, de-
tection of a known signal can usually be achieved
with optimal or near-optimal performance using a
single correctly timed sample at the output of a prop-
erly matched filter. If the signal structure is known
except for some unknown parameters such as arrival
time and/or Doppler shift, then it is possible to con-
struct a bank of filters matched to the signal at differ-
ent parameter values (i.e., range and/or Doppler
bins). However, the typical filter bank approach in-
volves a full set of purposefully coherent measure-
ment kernels as opposed to an incomplete set of
incoherent kernels. This difference causes average
SNR loss [19,20], which makes compressive RF sys-
tems a questionable choice for any application re-
quiring detection of weak signals.

We have considered the general problem of SNR
loss for a set of orthonormal measurement kernels
[21]. In our analysis, we model unknown signal
parameters as random, which leads to treating the
signal being acquired as a random process. By ex-
panding the random signal with a Karhunen–Loeve
expansion (KLE) [22], we can express average output
SNR in terms of the variance of the KLE coefficients.

Consider the matrix-vector version of the RF CS
problem, including expansion of the signal as f � Ψx,
where the columns of Ψ are discretized versions of
the KLE basis functions. We define the native dimen-
sionality N (i.e., the number of samples required
to capture the signal at the Nyquist rate) of f �r; t�
as the rank of the signal covariance matrix, N �
rankfE�xxT �g, which is also the number of KLE coef-
ficients having nonzero variance. Let the preprojec-
tion noise be additive, zero-mean white noise such
that E�n� � 0 and E�nnT � � PnI. We consider two
cases in particular. First, we consider a randommea-
surement operator and make no assumptions about
the statistical distribution on the coefficients of x.
Second, we consider a deterministic measurement
operator for the case in which all elements of the
KLE vector x have the same variance.

Due to the orthonormal constraint we have placed
on the measurement kernels, the output noise power
is equal to the input noise power. Therefore, average
output SNR depends on the fraction of signal energy
that is captured by the M < N measurements. The
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output signal samples are ys � ΦΨx, so the expected
output signal energy is

E�yTs ys� � E��ΦΨx�T�ΦΨx�� � TrfE�ΨTΦTΦΨxxT �g
� TrfE�ΨTΦTΦΨ�E�xxT �g: (10)

From the orthonormality of Φ and of the KLE
basis, we can then conclude that the diagonal
elements of E�ΨTΦTΦΨ� are equal to �M∕N�. Fur-
thermore, the covariance matrix E�xxT � is diagonal
because KLE coefficients are uncorrelated, which
leads to

E�yTs ys� �
M
N

TrfE�xxT �g � M
N

Ex: (11)

Random projections capture, on average, �M∕N�th
of the total available signal energy, resulting in an
average SNR loss equal to �N∕M�, which is the
system’s compression ratio.

The second case of interest involves deterministic
measurement kernels with uniform-variance KLE
coefficients. In this case, the coefficient covariance
matrix is E�xxT � � �Ex∕N�I, and Eq. (10) becomes

E�yTs ys� � �Ex∕N�TrfΨTΦTΦΨg � �M∕N�Ex; (12)

where we have again used the orthonormality of Φ
and Ψ. When average signal energy is evenly distrib-
uted over an N-dimensional space, only �M∕N�th of
the total available signal energy will be captured,
regardless of whether the M measurement kernels
are randomly generated or specifically designed.
Once again, SNR loss is equal to the system’s com-
pression ratio.

As an application example, consider the detection
of a radar target at a particular range but with un-
known Doppler shift. Let a noncompressive reference
system transmit a periodic train of N identical
pulses. In contrast, consider a compressive imple-
mentation in which a random subset of only M < N
pulses is transmitted. Allowing Ψ to be an N ×N
manifold of steering vectors for different Doppler
shifts (in radar and array processing, a steering vec-
tor contains the expected phase shifts due to discrete
observations of a sinusoid, such as the rotating Dop-
pler frequency component between multiple pulses
or the phase rotation due to signal propagation be-
tween antenna elements; a manifold of steering vec-
tors is a matrix in which each column is a steering
vector matched to a different frequency), the received
slow-time signal is Ψx, where x is a 1-sparse vector
with nonzero value in the location corresponding
to the target’s Doppler shift (assuming the target,
if present, is on the grid). The noncompressed noisy
observations are then Ψx� n. The sensing matrix Φ
for downselecting the number of pulses is an M ×N
matrix having all zeros in each row except for a single
‘1’ in a randomly selected column. In order to main-
tain the orthonormal kernel assumption, each ‘1’

must appear in a different column, but some columns
will have all zeros (i.e., they are not retained in the
compression). Clearly, the rows of the sensing matrix
are orthonormal, and it is clear that the preprojec-
tion noise model can reduce to the postprojection
noise model for this type of compression kernel. How-
ever, by starting with the preprojection noise model,
it is also clear that the compressive radar system col-
lects reduced energy from the target because only
M < N pulses are collected. It is not possible to in-
crease the power of each transmitted pulse unless
one is willing to also increase the power of the non-
compressive comparison system. Therefore, SNR is
degraded by a factor of �N∕M�, and any SWaP-C ben-
efits obtained by thinning the measurements must
be weighed against the corresponding loss in detec-
tion performance. For any RF system that has signal
detection as one of its fundamental tasks (and in ra-
dar, detecting weak signals in noise is a common
task), this SNR loss is likely to be an unacceptable
compromise.

B. Resolution Enhancement at High SNR

Intentional RF signal compression introduces SNR
loss that severely impacts detection performance.
But in some cases, a RF system may be resolution-
limited due to SWaP-C constraints on aperture
weight, the number of receiver channels, data collec-
tion time, or other factors. In these cases, compres-
sive measurement schemes may enable improved
precision, which we colloquially refer to as “native
resolution.”

Consider the Cramèr–Rao bound (CRB) on the
time delay estimation variance for a signal f �t − τ�
in white Gaussian noise where τ is unknown. The
CRB for this problem [23] satisfies

CRB�τ� ∝ �Ef B2�−1; (13)

where Ef denotes SNR and B is the bandwidth of f �t�.
Therefore, we observe that the CRB for time delay
estimation improves linearly with SNR and quad-
ratically with signal bandwidth. Next, consider a
case in which the receiver sampling rate is fixed
and cannot be increased due to SWaP-C or other con-
straints. If it is possible to increase the bandwidth of
f �t� (it is generally easier to generate higher band-
widths than it is to accurately sample them), then
there is potential estimation performance improve-
ment even if the full bandwidth increase cannot be
sampled. For example, suppose that the receiver
sampling rate matches the original signal bandwidth
of B, but that the signal bandwidth is now increased
by a factor of K. The receiver is now compressive by a
factor of K, which implies a factor of K loss in SNR.
Replacing the CRB expression with these new values
yields

CRB�τ� ∝
�
Ef

K
�KB�2

�
−1

� K−1�Ef B2�−1: (14)
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Even though the increased signal bandwidth has
forced the need for compressive sampling, the fact
that the CRB depends on B2 means that the overall
CRB has improved by a factor equal to the bandwidth
increase [24].

This general behavior will hold for other nonlin-
ear estimation problems as well. If compressive im-
plementations enable increased observation time,
observation aperture, or bandwidth, then the sys-
tem’s native resolution is increased. And if the
system can overcome SNR losses inherent in com-
pressive implementations, then improvement in
native resolution can be exploited for better param-
eter estimation performance. Extrapolating this
reasoning to imaging applications, improved native
resolution can lead to better imaging performance,
but arguably only in the high-SNR asymptotic
regime.

Although the CRB line of reasoning is a funda-
mental one, whether the potential performance im-
provement is actually realizable and affordable
depends on many system-level factors. Obviously,
expected SNR is an important factor. The CRB is
only a relevant metric in the asymptotic regime
where there is sufficient SNR for an estimator to
achieve or nearly achieve CRB-level performance.
The SNR loss of RF CS systems means that the in-
put SNR (prior to compression) needed to reach the
asymptotic region is now higher than for the non-
compressive system, but once the asymptotic region
is achieved, the estimation error variance can be
lower. Therefore, compressive implementations in-
tended to overcome native resolution limitations
inherent in finite SWaP-C may only be valid for
high-SNR applications requiring very strict imaging
and estimation performance. Furthermore, as CS ap-
proaches attempt to enhance native resolution at
high SNR, dependence on an accurate systemmodel
becomes more and more severe. At some point, the
calibration accuracy needed to realize the intended
performance gains may require such cost and effort
that the SWaP-C benefits of a compressive imple-
mentation are lost. Compressive implementations
may require additional or better analog hardware,
such as accurate analog multipliers or wideband
amplifiers. The cost, weight, and power of these ad-
ditional components must be factored into the over-
all system evaluation in order to determine whether
a compressive approach is beneficial. Finally, CRB
analyses connote traditional estimation methods
such as maximum likelihood estimation, while
quantitative evaluations of error variance or mean-
squared error have been rare for sparse recon-
struction methods. For compressive approaches to
see increased application, it is insufficient to quali-
tatively justify reduced error variance or to demon-
strate anecdotal images having higher native
resolution. Instead, full system evaluations must
be compared and weighed against quantitative as-
sessments of performance indicators that matter
to RF system users.

C. Calibration

Nonlinear processing in CS relies on a forward sen-
sor system model through the matrix A � ΦΨ. The
sensing matrix Φ mathematically describes the for-
ward sensing model implemented by the sensing
hardware, including the timing and spatial location
of samples, and relative gain and phase perturba-
tions across multiple receiver channels. Unfortu-
nately, nonlinearity of real components such as
mixers, analog multipliers, amplifiers, and A/D con-
verters cannot be captured in the linear sensing
model. The matrix Ψ mathematically describes the
waveforms of interest, which might be generated
by a separate system as in a communications or in-
telligence application, or by the same system that
possesses the compressive receiver as in a mono-
static radar application.

While the performance of any sensor depends on
knowledge of its sensing model, this is especially true
for model-based techniques that rely on accurate sig-
nal manifolds to adaptively cancel interference, accu-
rately estimate parameters, or enforce constraints
such as sparsity. Similar to the basis mismatch prob-
lem described below, if imperfectly calibrated hard-
ware causes distortion of a signal element away
from what the assumed model describes, the solution
will lose its sparsity. The scenario worsens with in-
creased subsampling levels as disparities between
assumed and actual sensing models become ampli-
fied. While some calibration errors can be modeled
as additive perturbations on the matrix A [25], non-
linear hardware effects cause unique problems.
Unlike the basis mismatch problem, where an off-
the-grid signal ceases to be sparse but is still a linear
combination of elements in the signal dictionary,
nonlinear hardware perturbations cannot be charac-
terized by the assumed linear projection model.
Third-order harmonics, signal amplitude compres-
sion, and other nonlinear effects are not captured
by y � ΦΨx and cannot be modeled by additive noise.

Some theoretical work on calibration errors has
been performed, e.g., [25], but calibration and nonlin-
ear hardware errors have not been investigated for
their impact on sensor exploitation performance.
Indeed, as we have mentioned, quantitative perfor-
mance and system trade studies are lacking for ideal
sensor assumptions, so it is no surprise that they are
also lacking for analyses that include system model
errors. The ultimate impact of hardware errors will
depend on the specific application, compression
method, and noise models. For example, we have de-
scribed above how CS implementations might admit
resolution enhancement at high SNR. This enhance-
ment, however, is contingent on precise knowledge
of the system model. Whether employing MMSE
processing or sparsity-based recovery methods, these
algorithms require an accurate signal model. Fur-
thermore, these algorithms are informed with prior
knowledge of the measurement accuracy, either
through signal and noise statistics or through adjust-
able error tolerance parameters. At high SNR, it is
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implied that all measurements are very accurate, but
calibration errors may mean that the measurements
are less accurate than believed. Thus, requirements
for system model accuracy become more and more
strict as SNR increases, yet the high-SNR regime
is exactly where RF CS may provide some of its most
important benefits.

Nonlinear errors and signal-dependent additive
noise will always be present in RF CS systems,
and examples of sparse reconstruction with real data
have been presented. However, the question of
whether RF CS hardware can be characterized in
a linear system model with sufficient accuracy to
support quantitative performance gains is still an
open question.

D. Entropy of Radar Data

Sparsity of an unknown signal—the ability to re-
present the signal using only a few terms from a fixed
incoherent dictionary—is the central premise of CS.
However, radar data are, in many applications, not
compressible. For example, in air-to-ground radar
imaging, raw phase history data typically admit ap-
proximately 2∶1 lossless compression, and only 8∶1
lossy compression. Factors contributing to high en-
tropy scenes include speckle and the scene roughness
at the scale of radar wavelengths. The coherent inter-
ference of reflectors within a resolution cell gives rise
to a random scattered field, causing the speckle phe-
nomenon; the same is true in optics for diffuse objects
[26]. Yet, in specific applications, the radar signals
may admit sparse representation. Examples include
echoes in ground-to-air surveillance, where the goal
is to detect reflectors against a zero-return back-
ground and high-frequency scattering from man-
made objects in a low-clutter environment [27].

E. Nonlinear Processing

CS employs nonlinear processing to reconstruct sig-
nals and/or form images from sub-Nyquist data
samples. Without the regularizing effect of sparsity-
constrained nonlinear processing, the resulting
signals or images are typically degraded by high
side-lobe levels. However, sparsity-constrained non-
linear processing also introduces artifacts. Although
sparse reconstruction may make signal or image
quality more visually appealing, the error statistics
behave in ways that are poorly handled by automatic
exploitation algorithms. Likewise, human image
analysts may respond poorly to the artifacts due to
nonlinear processing, while understanding and ac-
cepting the structured and predictable artifacts of
linear processing.

Very little work has yet evaluated exploitation
performance with compressive [28,29] or sparsity-
constrained [30,31] systems. Here we comment on
constant false alarm rate (CFAR) detection. A typical
radar system collects data that include interference
with unknown power levels and correlation struc-
ture. Once data are processed to produce a map of
received energy versus parameters such as range

and Doppler, thresholds must be derived from the
data and applied to each resolution cell. The goal
in deriving a threshold is to control the false alarm
rate, and hence to control the processing load of post-
detection stages. Techniques for CFAR threshhold-
ing include cell average methods [32,33], order
statistic methods [34], and even normalizations on
space-time adaptive filters [35,36] that theoretically
produce known output statistics in the target-absent
case. However, a common theme in these methods is
that they generally operate on processed data (e.g.,
range-Doppler cells or adaptive filter outputs) that
have well-behaved distributions such as Rayleigh
or exponential. These distributions are reasonable
when it comes to setting thresholds that achieve a
desired probability of false alarm. l1 regularization,
on the other hand, produces processed data with
sparse distributions (indeed, this is by design), and
the relationship between the sparse output statistics,
thresholds, and false alarm rates is generally un-
known and unpredictable. This scenario wreaks
havoc on existing detection thresholding algorithms
[28]. While order statistics in CFAR methods allow
for some outliers, none of the existing methods are
suitable for the sparse densities produced by l1
regularization.

The CFAR methods that have thus far been ex-
plored for compressive RF systems attempt to soften
the hard thresholding effects of l1 regularization
[29]. In [28], iterative signal reconstruction gener-
ates both thresholded and unthresholded signal
reconstructions at each step. The thresholded
version of the signal is unsuitable for CFAR detec-
tion, while the unthresholded signal is sensitive to
algorithm parameters and can have high side-lobes.
CFAR algorithms for compressive radar systems are
nascent and require maturation before they can be
applied in practice.

In addition to detection, classification is a frequent
inference goal for RF sensing, and template match-
ing remains a standard processing paradigm. As
with detection, poorly understood output statistics
degrade the performance of distance metrics in
matching. Moreover, scene-dependent parameter se-
lection, such as λ in Eq. (4), has significant impact on
both signal and noise properties in reconstructed sig-
natures. Template storage and search are typically
system bottlenecks due to an exponentially large va-
riety of target variations [37,38]; therefore, the sys-
tem design precludes expansion of a template library
to include variations in algorithm parameters.

F. Basis Mismatch

Physical parameters relevant to RF sensing, such as
delay, Doppler frequency, and angle of arrival, are
continuous parameters. The nominal CS theory, on
the other hand, requires a known fixed grid of param-
eter values. The mismatch between grid points and
actual parameter values destroys sparsity. The basis
mismatch issue has been noted by many authors
(e.g., [39,3,4,5]), and the severity of the issue grows
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with less sparse signals (larger s) and higher levels of
subsampling (larger N∕M).

A simple illustration of the basis mismatch “off-
the-grid” effect is illustrated in Fig. 3 for a single
complex sinusoid with N � 16 and a DFT basis.
The graph shows the amplitudes of the DFT coeffi-
cients in two cases. For the triangular markers,
the tone coincides with a grid point and results in
a highly sparse exact representation, s � 1. In con-
trast, for the circle markers the tone lies at normal-
ized frequency 0.35∕16 between grid points and
results in s � 0.5N to achieve even a modest 15 dB
SNR in the sparse approximation.

Recent CS literature has partially addressed the
off-the-grid issue, for the special case of a superposi-
tion of tones. For example, convex minimization of an
atomic norm [40], structured low-rank matrix com-
pletion [41], and amodified basis pursuit [42] provide
near-minimax estimation in the Fourier basis for de-
termining delays or angles of arrival. Proofs rely on
the properties of complex exponentials and the asso-
ciated continuous Fourier dictionary. The results
show that convex programming and certain greedy
algorithms can provide good reconstructions using
oversampled, and hence highly correlated, Fourier
dictionaries. However, the results require well-
separated tones, and hence do not offer the promise
of super-resolution. Empirically, however, a modest
super-resolution is observed at high SNR, resulting
in effective resolution somewhere between the
Rayleigh limit and the Cramèr–Rao lower bound
[43,41,44].

In addition to these provable performance guaran-
tees, heuristic algorithms have also been proposed
for addressing the off-the-grid effect [43,45,46].
For example, in [46] orthogonal matched pursuit
is modified to use nonlinear least-squares (NLLS)
[47]; at each iteration the maximum correlation
between a dictionary element and the residual initi-
alizes the NLLS nonconvex local optimization. The
technique is experimentally demonstrated in an
optical wideband converter whereby a RF signal
modulates an optical field, which then passes

through a spatial light modulator before transduc-
tion by a photodiode.

G. Benchmarking and Precedent

When benchmarking CS results, we note that many
elements of recent CS literature have long appeared
in RF practice; the absent piece prior to the 1990s
[1,48] and vigorously investigated since 2004 was
the mathematical foundation of provable perfor-
mance guarantees. Here, we highlight only a few
of the many relevant historical precedents. First,
for fast-time sub-Nyquist sampling, so-called
“stretch” processing of linear FM chirp waveforms
has permitted receiver sampling at rates determined
by the scene extent, rather than the signal band-
width [49,50]. Subsampling by a factor of 2 to 10 is
commonplace. Patented hardware implementation
appeared under the name “compressive receiver”
[51]; stretch processing has been combined with
sub-Nyquist analog-to-digital conversion for prov-
able and experimentally demonstrated recovery of
sparse signals using a sum-of-chirps waveform [52].

Second, random sampling has for six decades ap-
peared in practice as staggered pulse repetition
intervals [50] or in subsampled antenna arrays
[53,54,55,56]; the random arrays provide a large ef-
fective aperture with reduced hardware costs and
tolerable grating lobes. Third, l1 regularization of
linear inverse problems for side-lobe deconvolution
has long history in seismic processing [57] and in im-
aging [58], for example, in minimization of the l1
norm of gradients [59,60] and for sparse representa-
tion in physics-based dictionaries [61]. Recently,
more general sparsity-inducing nonquadratic regu-
larization [62,2,63,64,65] has been applied to radar
imaging; system-level assessment has shown classi-
fication performance improvements on par with a
two-times increase in sensor bandwidth [31]. Simi-
larly, a joint sparse signal model [66] has been used
for side-lobe suppression in polarimetric radar
imaging [67].

Fourth, greedy algorithmic approaches [68] and
iteratively reweighted least-squares [69,70] have
been employed in optics and RF for the deconvolution
of side-lobes in image recovery from sparse and
irregularly sampled Fourier data. Maximum entropy
[71], as well, has been used as a regularizing
criterion in reconstruction of sparse objects from
incomplete data. Other sparsity-driven nonlinear
processing techniques, including harmonic retrieval
and spectrum estimation, are surveyed in [30,72,73].
Fifth, the CS measure of coherence, μA, defined in
Eq. (1) is fully prescribed by the classical radar am-
biguity function [74]. RF engineers seek data acquis-
ition designs that yield an ambiguity function with a
sharp central peak and low side-lobe levels. The am-
biguity function is defined for the continuously val-
ued radar parameters, while coherence μA is given
by samples of the ambiguity function at locations cor-
responding to a sampled grid of parameter values;
thus, low-coherence measurement designs have a
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long history in radar. This connection is detailed
in [4].

The themes of sparse reconstruction algorithms
and low-coherence measurement operators via
pseudo-randomized data acquisition are long-
standing concepts in radar and optical processing;
the provable recovery guarantees provided by CS
theory serve to illuminate and invite the power of
purposefully combining these two themes.

H. Implementation Costs

In the case of sub-Nyquist analog-to-digital sam-
pling, additional hardware required must be factored
into the overall system evaluation. Sub-Nyquist sam-
pling requires analog multiplication of two wideband
signals—the signal being acquired and the measure-
ment kernel—to produce an even wider bandwidth
output. This wideband analog multiplication con-
volves the spectrum of the acquired signal in a
known way such that its full spectrum is partially
folded into a narrow sampling band prior to re-
duced-rate analog-to-digital conversion. Microwave
mixers are typically designed for optimum operation
when the signal at the local oscillator port is a pure
tone with very precise power level; therefore, they
may not be the best choice for performing the analog
multiplication. Of course, the required fidelity in the
analog multiplication will be driven by the user’s sys-
tem requirements, but very few studies have mapped
analog multiplier accuracy to signal reconstruction
accuracy [75,76,77] and ultimately to exploitation
performance.

Sub-Nyquist sampling also requires that all analog
components support the full signal bandwidth that
will ultimately be undersampled. The LNA that ap-
pears early in the receiver architecture not only must
have the high-gain and low-noise figures that iden-
tify it as an LNA, but also must be wideband such
that the signal is not distorted prior to compression.
If the signal is to be split after the LNA in order to
implement multiple compression kernels in parallel
[78], then the LNA is critical for setting SNR prior to
dividing the signal; even an ideal power divider has a
noise figure equal to the number of output branches.
Given the extra hardware requirements, one must be
careful to assess whether a compressive implementa-
tion is a better system choice than, say, a channelized
architecture that uses multiple narrower bands to
cover the full bandwidth.

That said, there are some indicators that CS-based
sub-Nyquist sampling could be an acceptable system
trade. Because the analog multiplier design has not
focused on this application, the designs could prob-
ably be improved if there were sufficient need. Fur-
thermore, the wideband analog signal must be
accurately generated, so sub-Nyquist A/D conversion
would not make sense if it cost more to generate the
kernel than it would to sample faster. But in a recent
evaluation of available commercial components, a
12-bit, 2-GSPS digital-to-analog converter (DAC)
needed for generating wideband kernels could be

obtained for about $50 and had a power consumption
of approximately 1 W. In contrast, a 12-bit, 2-GSPS
ADC cost approximately $1,500 and consumed about
3.5 W of power. There are obviously many other sys-
tem factors to consider, but these types of analyses
indicate the potential for compressive A/D conver-
sion to be a reasonable choice.

For compression via thinned array or thinned
slow-time pulses, there are no real system costs as-
sociated with not taking a measurement, which is
why implementations such as thinned arrays have
been around long before the recent CS trend. How-
ever, there clearly are increased computational costs
because l1 regularization is more computationally
intensive than beamforming or correlation-based fil-
ter banks. As computational power continues to in-
crease, the trend will favor architectures that save
on sampling hardware while shifting the burden to
the processing.

As a community, if we want CS techniques to find
application in real systems, wemust do a better job of
considering these types of SWaP-C impacts on the
receiver architecture, such that we can weigh system
impacts and computational loads against possible
performance gains.

5. Promising Benefits

Although the l1 minimization, greedy algorithms,
and randomized sampling present in the CS litera-
ture each have a long history in RF sensing, we
identify six emerging benefits—both direct and
indirect—of CS literature on engineering practice.

First, CS provides impetus for practitioners to seek
a provably accurate convex relaxation of a nonconvex
optimization task when recovering a signal or image
from incomplete measurements. An example of this
benefit appears in phase retrieval [79,80], where re-
cent CS literature has prompted a new look at a
classical problem. In [81], a convex formulation is
shown to provide stable phase recovery, and a fast
algorithm is given in [82]. Phase retrieval also marks
the extension of CS theory from a linear to a nonlin-
ear measurement model. In a similar vein, the
classical harmonic retrieval problem [83,84,73] has
been revisited with the aid of CS-inspired math-
ematical constructs. Convex minimization of an
atomic norm [40] and structured low-rank matrix
completion [41] provide near-minimax estimation
in the Fourier basis for determining delays or angles
of arrival. The techniques provably offer precision
beyond the diffraction limit and empirically may per-
form well for closely spaced tones; additionally, the
techniques seamlessly address the difficult issue of
model order selection. The convex formulation pro-
vides provable finite-sample performance guarantees.

Second, while radar data in many applications
may not be compressible, the difference of data chan-
nels may indeed have low entropy. This compressive
prior is exploited, for example, in radar change detec-
tion [85], where a Bayesian formulation is paired
with message passing computation to maintain or
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even improve detection performance versus tradi-
tional techniques, with fewer radar pulses across
an aperture. The system-level savings permit multi-
plexed use of radar resources. Similarly, the sparsity
of reflectors in a 3D resolution cell is exploited in
multipass radar interferometry [86,87,44] to imple-
ment position estimation with precision exceeding
the Rayleigh resolution.

Third, CS theory invites the codesign of data ac-
quisition and data processing to minimize hardware
costs. Such a design is found, for example, in a wide-
band RF system designed and fabricated for estima-
tion of radar pulse parameters without directly
acquiring Nyquist-rate samples [88]. The hardware
design includes a four-channel random modulation
preintegrator; data are processed using a heuristic
chain of estimation and detection steps, with fine
parameter grids and cubic interpolation to address
basis mismatch. However, wideband noise folds in
the analog signal path, as discussed in Section 4.A;
the laboratory demonstration does not report power
and performance comparisons with existing elec-
tronic intelligence solutions. The codesign theme is
also present in waveform design and structured illu-
mination [89]; an active RF system allows some flex-
ibility to influence the properties of the Φ matrix.

A fourth emerging benefit of CS literature for ra-
dar practice is the proof-of-performance guarantees
in multi-input, multi-output (MIMO) radar [90,91].
The possible gains of MIMO operation have been a
subject of interest and controversy [92]. ForR receive
and T transmit antennas, a debiased LASSO estima-
tor was shown to provide a log R gain in both reso-
lution and detection threshold versus matched filter
processing of random arrays [90], and resolution
scales as 1∕�RT�, versus 1∕�R� T� for uniform
arrays.

Fifth, several preliminary works offer optimism for
self-calibrating systems in which both the unknown
signal parameters and the data acquisition model
are jointly estimated [2,93,94,95,96]. These joint
estimation techniques are characterized by a priori
assumptions of parsimonious structure in both the
signal and the calibration.

Sixth, CS theory and the associated interdiscipli-
nary publications provide several indirect benefits
to RF engineers. Foremost is the availability of con-
vex programming methods for nonsmooth (e.g., l1)
optimization problems. The toolbox of freely avail-
able software is large and includes split-Bregman
[97] and approximate message passing [11,12] tech-
niques, among many others. As a simple illustration
of the rapid pace of algorithm development, consider
that a recent four-year interval witnessed roughly
three orders of magnitude acceleration of robust
principal component analysis (PCA) algorithms [93].
The algorithmic advances have enabled large-scale
problems, such as 3D video in cardiac magnetic res-
onance imaging, and have mitigated the computa-
tional overhead of nonlinear processing. Arguably,
the elegance and prominence of early CS literature

was a catalytic force for the interdisciplinary efforts
producing this wealth of convex optimization tools.
Further, the mathematical proofs at the heart of
CS challenge algorithm developers to rigorously es-
tablish performance guarantees for proposed proce-
dures. Simulation results or claims of asymptotic
statistical efficiency are no longer the gold standards.

6. Conclusions

Is CS relevant for RF sensing? We have seen that the
answer is a qualified “yes” for the simple reason that
CS processing techniques have been present in RF
practice for decades. For specific applications in
which sufficiently high SNR can be obtained from
irregularly sampled apertures, CS processing has a
long history, and the recent CS literature provides
provable performance guarantees and greatly im-
proved numerical optimization software. The speed
and scalability of the optimization software broaden
the applicability of regularized signal recovery tech-
niques to new RF approaches; examples discussed
include scenarios in which the difference of data
channels may exhibit low entropy and the joint re-
covery of both a signal and hardware calibration
parameters.

This paper outlined a set of issues attendant to
a balanced and system-level assessment of CS-
motivated solutions to RF sensing problems. We be-
lieve that as inquiry into CS methods matures, the
evolution beyond qualitative, anecdotal results will
require the sometimes difficult assessment of system
performance metrics including power, cost, system
complexity, robustness to system calibration, false
alarm rate, and classification rate. Equally challeng-
ing can be the benchmarking of performance to
relevant existing methods. We have highlighted,
through the RF preprojection noise model, the
SNR issues that require purposeful consideration
in the RF case and differ from some other sensing
modalities. Indeed, many RF applications are SNR-
limited, and therefore not amenable to the unavoid-
able SNR loss from CS data acquisition. And, we
have noted the difficulties associated with stably
estimating the nondifferentiable probability distri-
butions of decision statistics derived from nonlinear
CS processing. Broadly, the explosion of CS literature
invigorates evaluation of sensor resource manage-
ment in light of cumulative decades of technological
advances in the processing and storage for digi-
tal data.
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