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The information-theoretic waveform for target classification based on
spectral variance has been studied, and its advantages have been
shown. The waveform design algorithm has a low computational load
and can be applied to real-time applications. In looking for more
sophisticated methods while keeping the advantages of an
information-based approach, a new design algorithm by deriving a
strict lower bound of the information measure is developed. The
proposed design algorithm requires a small amount of calculation
and shows better classification performance in terms of percentage of
correct detection. The proposed method is compared with other
methods, and the improved performance is shown in numerically
generated graphs.
Introduction: A classification waveform algorithm was derived by
defining mutual information based on energy spectral variance
(MIESV) across the multiple target transfer functions in [1–3]. The
energy spectral variance (ESV) is a statistical variance among the
given target transfer functions, and the details are well documented in
the literature. In this Letter, we develop a new waveform design
algorithm by deriving a strict lower bound of MIESV (LBM) and
optimising an enhanced waveform by maximising the lower bound.
When the lower bound is a tight bound, the performance should be
improved. That is, the maximisation of the lower bound means
sufficiently the maximisation of MIESV. We verify the performance
improvement of the LBM waveform method compared with the
MIESV waveform method by computer simulation results.

System model and MIESV waveform algorithm: We adopt the similar
stochastic extended target model as in [2, 3] as follows. The received
signal is

y(t) = w(t) ∗ hi(t)+ n(t) (1)

where the target hypothesis index is i = 1, 2, . . . , H, w(t) is a
finite-energy waveform with duration Tw, ∗ denotes the convolution,
n(t) is the zero-mean receiver noise process with power spectral
density (PSD) Pn(f ), and the random target hi(t) is a wide-sense
stationary process with PSD Sh(f ). For a finite-duration stochastic
target model, we consider a finite-target model gi(t) = a(t)hi(t) where
a(t) is a rectangular window function of duration Tg [3]. We apply the
Fourier transform to the target model to obtain a frequency-domain
model as

y(f ) = w(f )gi(f )+ n(f ) (2)

The target impulse response gi(f ) can be a deterministic or random
target. For the random target model, gi(f ) is a finite-energy process
with zero mean [3].

Now, let us review the MIESV waveform algorithm based on (2).
MIESV was derived for two different target models [1–3]. The first is
a deterministic target model and the second is a random target model.
For the deterministic case, we have

MIESVD = Ty

∫
B
ln 1+ |w(f )|2SD(f )

TyPn(f )

[ ]
df (3)

where the ESV for a deterministic target model is SD(f ) =
∑H

i=1 Pr(Hi)
|gi(f )|2 − |∑H

i=1 Pr(Hi)gi(f )|2, and gi(f ) is the frequency response of the
ith target. Pr(Hi) is the probability that the ith target is present. For the
random case, we have

MIESVR = Ty

∫
B
ln 1+ |w(f )|2SR(f )

TyPn(f )

[ ]
df (4)

where the ESV is SR(f ) =
∑H

i=1Pr(Hi)s2
gi
(f )− |∑H

i=1Pr(Hi)
�������
s2
gi
(f )

√
|2,

and s2
gi
(f ) is the spectral energy function of the ith target. The mutual

information is then maximised with respect to the waveform under a
waveform energy constraint

�
B |w(f )|2 df ≤ Emax. In the next section,

we improve on (3) and (4) by deriving their lower bounds.

Lower bound of MIESV: By inspecting the structure of MIESV, we can
improve the information measure since the measure includes the sum of
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spectral energies and the mutual information is a concave function.
Thus, Jensen’s inequality provides a strict LBM. By this inequality
operation, we obtain a lower bound and design a waveform by
maximising the bound. Since the ESV is an approximation, the lower
bound approach is a stricter measure. When the bound is tight
enough, we can obtain a better waveform. Thus, we will perform and
show computer simulations to see whether the waveform method
based on LBM yields better performance or not. Next, we focus on
the LBM derivation for the random target model sets.

Before we derive LBM, we define a common function mR(f ) from the
given H-number of target impulse responses by mR(f ) = |∑H

i=1 Pr(Hi)�������
s2
gi
(f )

√
|2. The ESV is now expressed as SR(f ) =

∑H
i=1 Pr(Hi)s2

gi
(f )−

mR(f ). Now, we derive LBM as

MIESVR=Ty

∫
B
ln 1+|w(f )|2SR(f )

TyPn(f )

[ ]
df

=Ty

∫
B
ln 1+|w(f )|2{∑H

i=1Pr(Hi)s2
gi
(f )−mR(f )}

TyPn(f )

[ ]
df

=Ty

∫
B

ln 1+|w(f )|2{∑H
i=1Pr(Hi)s2

gi
(f )−∑H

i=1Pr(Hi)mR(f )}

TyPn(f )

[ ]
df

=Ty

∫
B
ln

∑H
i=1

Pr(Hi)·1+
∑H
i=1

Pr(Hi)
|w(f )|2{s2

gi
(f )−mR(f )}

TyPn(f )

{ }[ ]
df

since
∑H

i=1 Pr(Hi) = 1

= Ty

∫
B
ln

∑H
i=1

Pr(Hi) 1+ |w(f )|2{s2
gi
(f )− mR(f )}

TyPn(f )

{ }[ ]
df (5)

where mR(f ) does not depend on the index i. Applying Jensen’s inequal-
ity yields

MIESVR ≥
∑H
i=1

Pr(Hi) Ty

∫
B
ln 1+ |w(f )|2{s2

gi
(f )− mR(f )}

TyPn(f )

[ ]
df

{ }

since the logarithm function is a concave function. Therefore, the final
optimisation problem is

max
∑H
i=1

Pr(Hi) Ty

∫
B
ln 1+ |w(f )|2{ŝ2

gi
(f )}

TyPn(f )

[ ]
df

{ }

s.t.

∫
B
|w(f )|2 df ≤ Emax

(6)

where ŝ2
gi
(f ) = s2

gi
(f )− mR(f ). The objective function of the optimi-

sation procedure is the LBM, and its structure is composed of the sum
of multiple mutual information measures. Each mutual information is
defined based on the ith filtered spectral energy function ŝ2

gi
(f ) as

shown in (5). The ith filtered spectral energy function is the remnant
spectral energy in which the common spectral energy mR(f ) has been
removed. Classification is a process of emphasising the difference
between the target signatures as opposed to their shared spectral
information. Thus, it is reasonable to remove the common spectral
information for target classification waveform design.

For computer simulations, we discretise the LBM optimisation
problem of (5) into L frequency bins as

max Ty
∑H
i=1

Pr(Hi)
∑L
l=1

ln 1+ |w(l)|2{s2
gi
(l)− mR(l)}

TyPn(l)

[ ]
Df

s.t.
∑L
l=1

|w(l)|2 ≤ Ew

(7)

where Df is the width of a frequency bin, LDf is the transmit bandwidth,
l is a discrete frequency index, and mR(l) = |∑H

i=1 Pr(Hi)
������
s2
gi
(l)

√
|2.

Lagrangian optimisation: For the optimal waveform of LBM, we take
Lagrangian multiplier method and obtain
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L(l, V(l)) = Ty
∑H
i=1

Pr(Hi)
∑L
l=1

ln 1+V(l)Si(l)

TyPn(l)

[ ]
Df

+ l
∑L
l=1

V(l)− Ew

( )

where Si(l) = s2
gi
(l)− mR(l), and |w(l)|2 = V(l). Here, let us apply the

first derivative to L(l, V(l)) with respect to V(l) to obtain

∂L(l, V(l))

∂V(l)
= Ty

∑H
i=1

Pr(Hi)
Si(l)/TyPn(l)

1+V(l)(Si(l)/TyPn(l))
Df + l

= Ty
∑H
i=1

Pr(Hi)
Ai(l)

1+V(l)Ai(l)
Df + l

where Ai(l) = Si(l)/TyPn(l). For the maximum information value of the
objective function, we set ∂L(l, V(l))/∂V(l) = 0 to obtain

∑H
i=1

Pr(Hi)
Ai(l)

1+V(l)Ai(l)
= l

Ty · Df
Therefore, the optimal {V(l)|l = 1, 2, . . . , L} is numerically calculated
by

∑L
l=1

V(l) = Ew and
∑H
i=1

Pr(Hi)
Ai(l)

1+V(l)Ai(l)
= C (8)

where C = l/(Ty · Df ), and V(l) is inversely proportional to C. The
final optimal waveform is obtained by the relationship |w(l)|2 = V(l).
This optimisation procedure is obtained via an iterative water-filling
method [4].

Similarly, the waveform optimisation for the deterministic target
model is

max Ty
∑H
i=1

Pr(Hi)
∑L
l=1

ln 1+ |w(l)|2{|gi(l)|2 − mD(l)}

TyPn(l)

[ ]
Df

s.t. to
∑L
l=1

|w(l)|2 ≤ Ew

(9)

where mD(l) = |∑H
i=1 Pr(Hi)gi(l)|2. We can obtain the optimal wave-

form by a similar method.
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Fig. 1 Performance comparison of various waveform design methods in case
of 40 tap waveform with deterministic target set

Simulation results: We show two simulation results that indicate the
benefit of using LBM as a waveform design measure for a deterministic
target model and a random target model. The system parameters for the
simulation results are as follows. The waveform dimension L is 40, the
measurement noise power s2 is normalised to 1, and the waveform
energy allocation varies from 10−4 to 101 energy units. The number
of target classesH is 4. The percentage of correct detection is calculated
over 20,000 Monte Carlo trials. For Fig. 1, we averaged the results of ten
different deterministic target sets. For the random target results in Fig. 2,
ELECTRONICS LETTERS
we generated unique target class energy spectra for each trial, and then
generated a realisation of the target from the energy spectrum of the
correct target class. The percentage of correct detection is calculated
in determining the true target transfer function for three different
waveforms and their performances in Figs. 1 and 2 are compared. For
comparison, we plot the results of two additional waveform methods:
wideband waveform and the MIESV waveform. The wideband
waveform has a uniform energy distribution over the transmission
band. The LBM waveform shows the best performance among
wideband, MIESV, and LBM waveforms and demonstrates a wider
performance gain gap in the random target simulation of Fig. 2 than
in the deterministic target simulation of Fig. 1. Especially, the result
of random target simulation shows better improvement in the lower
bound approach at just <10−1 transmit energy units.
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Fig. 2 Performance comparison of various waveform design methods in case
of 40 tap waveform with random target set

Conclusion: An enhanced waveform design method has been derived
by applying Jensen’s inequality to MIESV. The proposed waveform
design algorithm shows improved performance in computer simulations
because the waveform is optimised by maximising the LBM measure,
which is a strict LBM. The optimisation procedure is performed by an
iterative water-filling method whose computational load is very light.
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