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Abstract - In this paper, we present a method of calculating 
and updating target probabilities in ambiguous range-
Doppler cells along with an adaptive pulse repetition 
frequency (PRF) selection technique based on mutual 
information (MI).  We approach the problem of updating the 
probability in multiple ambiguous cells by using a multiple 
hypothesis test for the target state.  The probability ensemble 
is then used to determine which PRF will maximize MI on 
the next update.  Since MI is a measure of the reduction in 
entropy of the ensemble, it indicates the amount of 
information the radar stands to learn about the channel due 
to the selected PRF.  We compare the results of MI-based 
PRF selection to two other PRF selection methods and 
demonstrate how blind zones and clutter aliasing can be 
seamlessly integrated into our PRF-selection procedure.  

1 INTRODUCTION 

Range-Doppler ambiguities are well-known 
phenomena of pulsed radar systems that limit 
performance.  These ambiguities are caused by 
aliasing in the time and frequency domains and 
their structure is controlled by pulse repetition 
frequency (PRF).  Coding of individual pulses and 
using waveforms with varying PRF (also known as 
staggered PRF) have been suggested to solve this 
problem [1-3].  These methods are designed to 
work well in traditional radar systems where 
decisions about target states are uninfluenced by 
previous measurements and data are only valid for a 
single collection interval. 

Cognitive radar (CR) interprets the propagation 
channel as a random ensemble of potential target 
states [4].  In contrast to classical radar, CR retains 
information from past measurements in a 
probability map describing target parameters such 
as range and Doppler.  CR gains a probabilistic 
understanding of the channel using adaptive 
probing methods.   

In this paper, we present a PRF selection 
technique based on maximizing mutual information 
between radar measurements and a probabilistic 
representation of the range-Doppler space.  In 
Section 2, we describe the scenario model.  Section 
3 describes our multiple hypothesis framework and 
our probability update.  The mutual-information-
based PRF selection criterion is explained in 
Section 4.  We show results in Section 5.  
Concluding remarks are presented in Section 6. 

2 SCENARIO MODEL 

We focus our discussion on pulsed monostatic radar 
systems.  The propagation channel consists of point 
targets, random noise, and clutter from unwanted 
ground returns.  Let ݉ denote the range-Doppler 

cell from which a signal is received.  The range 
measurement (fast-time) indices are ݊ ൌ 0,1, … , ܰ െ 1 and the Doppler measurement (slow-
time) indices are ݈ ൌ  0,1, … ܮ െ 1.  For a radar 
system, the range and Doppler states of a target can 
be interpreted as frequencies.  Let the normalized 
range and Doppler frequencies for a target in the ݉௧௛ bin be ோ݂೘ and ஽݂೘, respectively.  Only cells 
with different frequencies can be resolved.  The 
received signal produced by a target in the ݉௧௛ cell 
is proportional to a normalized fast-time/slow-time 
steering vector given by ࢙௠ ൌ

(1) 
ܮ√1 · ܰ exp൫െ݆2ߨ ோ݂೘ሾ0 … ݊ … ܰ െ 1ሿ்൯ ٔ exp൫െ݆2ߨ ஽݂௠ሾ0 … ݈ … ܮ െ 1ሿ்൯. 

Equation (1) illustrates that aliasing occurs when 
range and/or Doppler normalized frequencies differ 
by an integer amount.  Cells with aliased 
frequencies are indistinguishable (ambiguous).  
Range ambiguities are controlled by PRF according 
to 

 ܴ௔,௠௔௫ ൌ ܿ2 ·  (2) ܨܴܲ

where ܿ is the speed of light and the factor of two in 
the denominator accounts for the roundtrip.  The 
maximum unambiguous Doppler is directly related 
to PRF according to 

ௗ,௠௔௫ܨ  ൌ  (3) .ܨܴܲ
Equations (2) and (3) show the well-known inverse 
relationship between range and Doppler 
ambiguities.   

Since transmitter and receiver are collocated in 
a monostatic radar, the receiver must turn off during 
pulse transmission to protect the hardware from 
damage.  This causes unobservable ranges known 
as blind zones which are described by 

 ܴ௕௟௜௡ௗ ൌ ܿ · ௣2ݐ  (4) 

where ݐ௣ is the width of the pulse in seconds. 
We form a two-dimensional grid of possible 

range and Doppler values.  Associated with each 
range-Doppler bin in the grid is a probability that a 
target is present in that bin. Different permutations 
of target presence/absence in various bins forms the 
ensemble of potential target states. For simplicity, 
we assume the grid is square with ܯ range and ܯ  
Doppler bins where M is larger than the number of 
unambiguous bins in either dimension.  The 
channel is described by a set of ܯଶ probabilities.  
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Let ܬ be the number of distinct PRFs available to 
the radar and ௝ܰ be the number of range-Doppler 
ambiguities when the ݆௧௛ PRF is used.  Figure 1 is a 
rendering of the ensemble with the first group of 
ambiguous cells shaded. 

 
Figure 1:  Illustration of ensemble and formation of 
hypothesis space.  Shaded cells are ambiguous. 

The presence/absence of a target in any cell is 
independent of target presence/absence in other 
cells.  A multiple hypothesis framework can be 
used to describe the 2ெమ  number of possible target 
states.  Each hypothesis may be thought of as a 
joint hypothesis corresponding to a unique 
permutation of target presence/absence in 
individual cells.  The target hypotheses are ܪ଴: ࢠ ൌ ࢔ ൅  ଴ࢉ

(5) 

:ଵܪ ࢠ ൌ ଵ࢙ଵߙ ൅ ࢔ ൅ :ଶܪ ଵࢉ ࢠ ൌ ଶ࢙ଶߙ ൅ ࢔ ൅ :ଶಾమିଵܪ ڭ ଶࢉ ࢠ ൌ ଵ࢙ଵߙ ൅ ଶ࢙ଶߙ ൅ ڮ ௠ ൅࢙௠ߙ ڮ ெమ࢙ெమߙ ൅ ݊ ൅  ଶಾమିଵࢉ
where the reflection coefficient ߙ௠ is modeled as a 
random variable with Rayleigh distributed 
amplitude and uniformly distributed phase.  The 
noise, ࢔, is a complex Gaussian random vector with 
zero mean and covariance matrix ߪ௡ଶࡵ.  The clutter, ࢉ, is distributed according to ܰܥሺ૙,  ሻ.  Weࢉࡾ
assume the radar platform is stationary which 
centers the clutter at zero Doppler.  We also assume 
the clutter is uncorrelated in range and model the 
clutter as having a power spectral density (PSD) in 
the shape of a hanning window. 

3 PROBABILITY UPDATE 

For cells that are resolvable and unambiguous, 
target probabilities can be updated separately in 
each cell based on an observed CPI. However, the 
probabilities of ambiguous cells cannot be updated 
separately and must be treated jointly. Using the 
hypotheses described in the previous section, a set 
of ambiguous joint hypotheses can be obtained for 
every uniquely resolvable range-Doppler cell (see 
Figure 1). In this section, we first show the general 

probability update procedure, then show the special 
case of resolvable cells. 

3.1 Procedure for the General Case 
The pdf for the measured data under the ݅௧௛ joint 
hypothesis from (5) is ݌ሺܪ|ࢠ௜ሻ ൌ ೔࢙ࡾேหߨ1 ൅ ࡵ௡ଶߪ ൅ ௖೔หேࡾ · expൣെࢠுሺ࢙ࡾ೔ ൅ ࡵ௡ଶߪ ൅  ൧ (6)ࢠ௖೔ሻି૚ࡾ

where ࢙ࡾ೔  and ࡾ௖೔  are the target and the clutter 
covariance matrices, respectively, for the 
measurement under the ݅௧௛ hypothesis.   

Our goal is to update the individual cell 
probabilities.  We must first update the joint 
hypotheses using Bayes’ rule, which gives the 
posterior probability for a single joint hypothesis as ܲሺܪ௜|ࢠ௞ሻ ൌ ܲሺܪ௜|ࢠ௞ିଵሻ݌ሺࢠ௞|ܪ௜ሻ݌ሺࢠ௞ሻ  (7) 

where ܲሺܪ௜|ࢠ௞ሻ is the probability of hypothesis ݅ 
after collecting ݇ CPIs. The denominator of (7) may 
not be readily available, however it is the same for 
all joint hypotheses and can be replaced by a factor ߚ which normalizes the sum of the joint hypotheses 
yielding ܲሺܪ௜|ࢠ௞ሻ ൌ  ௜ሻ. (8)ܪ|௞ࢠሺ݌௞ିଵሻࢠ|௜ܪሺܲߚ

We now describe how to obtain ܲሺܪ௜|ࢠ௞ିଵሻ, 
the probability of the ݅௧௛ hypothesis prior to the ݇௧௛ 
CPI. The probability of a joint hypothesis can be 
calculated by multiplying the probabilities of the 
individual cells in that hypothesis according to ܲሺܪ଴|ࢠ௞ିଵሻ ൌ ଵܲ ଶܲ ଷܲ … ெܲெ  

(9) 
ܲሺܪଵ|ࢠ௞ିଵሻ ൌ ଵܲ ଶܲ ଷܲ … ெܲெ  ܲሺܪଶ|ࢠ௞ିଵሻ ൌ ଵܲ ଶܲ ଷܲ … ெܲெ ڭ ܲሺܪଶಾమିଵ|ࢠ௞ିଵሻ ൌ ଵܲ ଶܲ ଷܲ … ெܲெ 

where the overbar represents ሺ1 െ ௠ܲሻ. Thus, (9) 
describes how to obtain prior probabilities for a 
joint hypothesis and (6) gives the data pdf for a 
joint hypothesis. These are used to update as in (8), 
then the updated joint hypothesis probabilities are 
converted back to cell probabilities by finding the 
marginal probabilities from ܲሺܪ௜|ࢠ௞ሻ.   

3.2 Procedure for the Resolvable Cell Case 
As mentioned earlier, resolvable cells can be treated 
separately. While the multiple hypothesis 
framework presented in (5) is valid for this case, it 
is computationally more efficient to perform 
separate probability updates for resolvable cells.  
For the ݉௧௛ cell, let ࣢௠,଴ and ࣢௠,ଵ be the target 
null and present hypotheses. Bayes’ rule for an 
individual cell probability is then 
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ܲ൫࣢௠,଴หࢠ௞൯ ൌ ܲ൫࣢௠,଴หࢠ௞ିଵ൯݌൫ࢠ௞ห࣢௠,଴൯݌ሺࢠ௞ሻ ൌ ܲߛ൫࣢௠,଴หࢠ௞ିଵ൯݌൫ࢠ௞ห࣢௠,଴൯ 
(10) 

ܲ൫࣢௠,ଵหࢠ௞൯ ൌ ܲ൫࣢௠,ଵหݖ௞ିଵ൯݌൫ࢠ௞ห࣢௠,ଵ൯݌ሺࢠ௞ሻ ൌ ܲߛ൫࣢௠,ଵหࢠ௞ିଵ൯݌൫ࢠ௞ห࣢௠,ଵ൯. (11) 

For ܳ resolvable range-Doppler cells, the update 
procedure can be divided into ܳ separate update 
calculations, one for each ambiguity group.  Each 
calculation has ௤ܰ joint hypotheses where index ݍ 
represents the ambiguity group being considered. 

4 MUTUAL-INFORMATION-BASED PRF 
SELECTION 

4.1 Closed-Loop Operation 
Our goal is to detect targets in range and Doppler 
using the probabilities calculated in the previous 
section.  We can represent target presence/absence 
in the ݉௧௛ cell as a binary random variable ݔ௠.  
Unfortunately, there is no closed-form for the 
mutual information ܫሺࢠ௞;  ௠ is a binaryݔ ௠ሻ sinceݔ
random variable and ࢠ௞ is a Gaussian mixture.  A 
technique for estimating the mutual information ܫሺࢠ௞;  ௠ሻ based on a quantity known as spectralݔ
variance is presented in [5].  In order to show how 
the principles in [5] apply to our case, we define a 
new mutual information calculation  ܫሺࢠ௞;  ෥௤ሻ࢞
where ࢞෥௤ is a binary random vector for the ݍ௧௛ 
group of ambiguous cells.  For the case in Figure 1, ࢞෥ଵ is  ࢞෥ଵ ൌ ሾݔ෤ଵ  ݔ෤ସ … ෤ଷெାସݔ  ෤ଷெାଵݔ  ෤ெெሿ. (12)ݔ  …
Binary random variables ݔ෤௠ representing target 
presence/absence in the ݉௧௛ cell form the elements 
of ࢞෥௤.  Let the mutual information for one group of 
ambiguous cells be defined as 
;௞ࢠ൫ܫ  ෥௤൯࢞ ൌ log൫1 ൅ ܵܰ෫ܴ௤൯ (13) 
where  
 ܵܰ෫ܴ௤ ൌ ௡ଶߪଶ෢௦,௤ߪ ൅  ௖ଶ. (14)ߪ

Equation (13) approximates the information the 
radar stands to learn about the propagation channel 
in bits.  The joint hypotheses are used to obtain ߪଶ෢௦,௤, an estimate of the target variance for the ݍ௧௛ 
ambiguity group.  This is similar to how a spectral 
variance from [5] is used to design matched-
illumination waveforms in [6, 7].  Using the 
probabilities of the joint hypotheses from the ݍ௧௛ 
ambiguity group, the estimated target variance is 
ଶ෢௦,௤ߪ  ൌ  ෍ ௜ܲߪ௜ଶ െ ቮ ෍ ௜ܲߪ௜

ே೜ିଵ
௜ୀ଴ ቮଶே೜ିଵ

௜ୀ଴  (15) 

where ߪ௜ଶ is the RCS for the ݅௧௛ joint hypothesis.  
This process is repeated for all ܳ groups of 

ambiguous cells in the ensemble.  The total mutual 
information of the ensemble for one PRF is  
;௞ࢠሺܫ  ෥࢞ ሻ ൌ ෍ ;௞ࢠሺܫ ෥௤ሻொ࢞

௤ୀଵ . (16) 

The PRF that maximizes mutual information in (16) 
is chosen to produce the waveform for the next CPI. 

4.2 Termination Criterion: Binary Hypothesis 
Test 
In this subsection, we present a binary hypothesis 
test introduced by Wald [8] to determine when our 
adaptive PRF system should cease waveform 
transmission. 

We only need to decide if a target is present or 
absent in each cell.  The probability that a target is 
present in the ݉௧௛ cell is ௠ܲ.  Let Λ௠௞  be a decision 
statistic for the ݉௧௛ cell calculated after the ݇௧௛ 
transmission given by ߉௠௞ ൌ ଶሻݖ଴ଶሺ݌ଵሻݖ଴ଵሺ݌ ڮ ଶሻݖଵଶሺ݌ଵሻݖଵଵሺ݌௞ሻݖ଴௞ሺ݌ ڮ ௞ሻݖଵ௞ሺ݌ 1 െ ୫ܲ୫ܲ . (17) 

Lowercase ݌௜௞ሺࢠ௞ሻ is the pdf of the measurement at 
the ݇௧௛ iteration, ࢠ௞.  The first subscript on p 
represents the hypothesis under test, target present 
or target absent.  Let ߙ represent the probability of 
declaring a target when no target is present.  After 
each transmission, we compute 
௠௞߉  ൐ 1 െ ௠ߙ௠ߙ   (18) 

for all cells in the ensemble.  If all cells pass the 
criterion defined in (18), the target probabilities are 
close to 0 or 1 and the algorithm terminates. 

4.3 Exceptions 
Due to constraints of radar systems, a blind zone 
always exists close to the radar.  The probabilities 
in the blind cells never get updated.  Thus the 
termination criterion is not applied to these cells.   

5 SIMULATION RESULTS 

Results for mutual information, random, and 
coprime PRF selection schemes are presented in 
this section.  The results are obtained from a 160-
run Monte Carlo simulation.  Clutter is present in 
all cases and has a clutter-to-noise ratio (CNR) of 
40 dB per measurement.  For the MI and random-
PRF selection cases, the radar was allowed to 
choose from four PRFs.  Two coprime PRFs 
alternated between CPIs for the coprime scenario.  
For the results shown in this section, all cells in the 
ensembles were initialized to a probability of 0.05.  
The PRF of the first CPI was randomly chosen 
from the available PRFs.   

Figure 2 shows the average number of CPIs 
required for each algorithm to meet the termination 
criterion.  The amount of target information per CPI 
increases with increasing SNR; therefore, it is 
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expected that the number of scans required to meet 
the termination criterion decreases as SNR 
increases.  The MI selection scheme exhibits better 
performance than the other two cases because it 
maximizes the information obtained from the radar 
channel in each scan. 

Figure 3 shows the average mutual information 
per CPI vs SNR per CPI.  Mutual information is a 
measure of the decrease in uncertainty of the 
ensemble.  As SNR per CPI increases, more 
information can be extracted from the channel in 
each CPI.  Therefore, the mutual information 
increases with increasing SNR as expected. Figure 
3 can be interpreted as showing the mutual 
information per unit energy.   

The final metric we show to assess the MI 
algorithm is probability of detection ( ஽ܲሻ per CPI 
or, equivalently, per unit energy.  This is shown in 
Figure 4.  The MI algorithm illustrated a marked 
improvement in ஽ܲ over the random and coprime 
techniques. 

 
Figure 2:  Comparison of number of transmissions 
required to reach termination criterion 

 
Figure 3: Comparison of average mutual information 
per unit energy transmitted 

 
Figure 4: Comparison of probability of detection per 
unit energy transmitted 

6 CONCLUSION 

In this paper, we developed a PRF selection 
technique based on maximum mutual information 
and described how to obtain and update target 
probabilities for ambiguous range-Doppler cells 
using a set of joint hypotheses.  We described the 
difficulty in determining the actual state of the 
binary random variable that describes target 
presence/absence in the ensemble cells and 
presented a technique used in [5-7] to estimate 
spectral variance of the ensemble.  Finally, we 
presented results showing the mutual information 
PRF selection technique is superior to a random 
PRF selection technique and a scheme that 
alternates between two coprime PRFs.  
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