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Abstract: The waveform algorithm for active target classification or iden-

tification based on spectral variance has been studied in various pieces of

literature. The algorithm was extended for widely-separated MIMO Radar

system to take advantage of spatial diversity gain by Bae et al. However,

the MIMO waveform can be improved further by considering multiple

objective functions from the multiple target paths. In this letter, we optimize

the MIMO waveform for target identification system by maximizing the

multiple objective functions. We show simulation results to compare the

proposed algorithm to other MIMO waveform design methods.
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1 Introduction

Goodman et al. derived a classification waveform algorithm for enhanced target

classification by defining mutual information based on energy spectral variance

(MIESV) across the transfer functions of the various target hypotheses in [1, 2, 3].

Energy spectral variance (ESV) quantifies the statistical variance over a set of

finite-duration target transfer functions. The details on the use of MIESV for

classification task are described in [2, 3]. Bae et al. extended the MIESV algorithm

for multiple-input, multiple-output (MIMO) radar by adding the spectral variance

of the monostatic target impulse response and the spectral variances of the bistatic

target impulse responses in [4] and showed the diversity gain in MIMO radar

simulations.

In a MIMO radar system, multiple waveforms from widely separated radars are

transmitted and reflected by a target. Then, the reflected waveforms are captured

and combined by multiple radar receivers. Each single waveform is simultaneously

captured by multiple radar receivers. For single-input, multiple-output (SIMO)

waveform optimization, the single waveform affects the observations of the multi-

ple radar receivers as shown in Fig. 1, and the waveform optimization can be

performed by maximizing multiple objective functions based on the multiple

observations. In addition, MIESV has the form of mutual information, and a

MIMO waveform can be designed from the sum of the multiple mutual information

measures. This information measure for each MIMO path is a function of the

waveform parameters. Thus, we propose a MIMO classification waveform method

based on multi-objective optimization (MO).

2 Monostatic radar model

We consider a stochastic extended target model for a particular target j, according

to [2, 3]

yðtÞ ¼ wðtÞ � hjðtÞ þ nðtÞ ð1Þ
where � denotes convolution, the target hypothesis index j ¼ 1; 2; . . . ;H, yðtÞ is
the received observation with duration Ty, wðtÞ is a finite-energy waveform with

duration Tw, nðtÞ is zero-mean receiver noise process with power spectral density

(PSD) PnðfÞ, and the random target hjðtÞ is a wide-sense stationary process with

PSD ShðfÞ. For a finite-duration stochastic target model, we adopt a finite target

model gjðtÞ ¼ aðtÞhjðtÞ where aðtÞ is a rectangular window function of duration Tg

[3]. The frequency-domain system model that results from the Fourier transform is

yðfÞ ¼ wðfÞgjðfÞ þ nðfÞ
where gjðfÞ is a finite-energy process with zero-mean [3]. The classification

waveform optimization based on MIESV is expressed by
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maxMIESV

subject to

Z
B

jwðfÞj2df � Emax ð2Þ

where MIESV ¼ Ty
R
B ln

�
1 þ jwðfÞj2SRðfÞ

TyPnðfÞ
�
df, Emax is a given waveform energy

constraint for wðfÞ, the ESV for a random target model is SRðfÞ ¼PH
j¼1 PrðHjÞ�2

gj
ðfÞ �

���PH
j¼1 PrðHjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
gj
ðfÞ

q ���2, PrðHjÞ is the probability of the jth

target hypothesis, and �2
gj
ðfÞ is the spectral energy of the jth target. Now, let us

define a MIMO radar signal model for use in waveform design.

3 MIMO radar model

For MIMO radar model, the observation of the kth radar receiver due to the

waveform from the l th radar transmitter is defined as

yklðfÞ ¼ wlðfÞgjklðfÞ þ nklðfÞ
where the radar receiver index is k ¼ 1; 2; . . . ; NRx, the radar transmitter index is

l ¼ 1; 2; . . . ; NTx, and gjklðfÞ is a finite-energy process with zero-mean [3]. Here,

we have NRx � NTx number of observations. Each observation includes one of H
target impulse responses. The MIMO waveform is composed of NTx SIMO wave-

forms since the multiple waveforms from the different transmit radars are separable

in the radar receivers. First, let us consider the SIMO waveform for the 1st radar.

Fig. 1 shows that the first radar transmits a waveform, and its reflections are

captured by the NRx radar receivers. From this result, an optimization method based

on NRx objective functions is derived.

Each of the objective functions is individually defined by an MIESV metric.

Thus, the SIMO waveform optimization from the l th radar is described by multiple-

objective optimization problem as

max
XNRx

k¼1
CkTy

Z
B

ln 1 þ jwlðfÞj2SklðfÞ
TyPnðfÞ

� �
df

subject to

Z
B

jwlðfÞj2df � Emax ð3Þ

where SklðfÞ ¼
PH

j¼1 PrðHjÞ�2
gjkl

ðfÞ �
���PH

j¼1 PrðHjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
gjkl

ðfÞ
q ���2, and Ck defines

the weights of the combination. We can define the weight factors depending on the

Fig. 1. SIMO radar waveform transmission and reception: The 1st
radar transmits a waveform, and all radars receive a reflection
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degree of importance of each MIESVðk;lÞ for a given l. However, in this letter, we

set the weighting factors to unity for simplicity.

To enable computer simulation, we now define a discrete optimization problem

from (3) as

max
XNRx

k¼1
Ty
XM
m¼1

ln 1 þ �lðmÞSklðmÞ
TyPnðmÞ

� �
�f

subject to
XM
m¼1

�lðmÞ � Ew ð4Þ

where m is the index of a discrete frequency bin after the transmit bandwidth

has been divided into intervals, �f is the width of a single frequency bin,

jwlðmÞj2 ¼ �lðmÞ, and Ew is a given waveform energy constraint for wlðmÞ. The
scalar sum of the multiple objective functions is a concave function since each of

the objective functions is ln j � j which is concave. The concavity property of the

scalar sum of ln j � j was also discussed in [5]. Thus, we define a Lagrangian

problem and derive the optimization procedure as

Lð�;�lðmÞÞ

¼
XNRx

k¼1
Ty
XM
m¼1

ln 1 þ �lðmÞSklðmÞ
TyPnðmÞ

� �
�f þ �

XM
m¼1

�lðmÞ � Ew

 !
:

By applying the first derivative to Lð�;�lðmÞÞ with respect to �lðmÞ, we obtain

@Lð�;�lðmÞÞ
@�lðmÞ ¼

XNRx

k¼1
Ty

SklðmÞ
TyPnðmÞ

1 þ�lðmÞ SklðmÞ
TyPnðmÞ

�f þ �

¼
XNRx

k¼1
Ty

AkðmÞ
1 þ�lðmÞAkðmÞ �f þ �

where SklðfÞ ¼
PH

j¼1 PrðHjÞ�2
gjkl

ðfÞ �
���PH

j¼1 PrðHjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
gjkl

ðfÞ
q ���2 and AkðmÞ ¼

SklðmÞ
TyPnðmÞ . For the maximum value of the linear sum of multiple objective functions,

let us apply @Lð�;�lðmÞÞ
@�lðmÞ ¼ 0 to get

@Lð�;�lðmÞÞ
@�lðmÞ ¼ 0 )

XNRx

k¼1

AkðmÞ
1 þ�lðmÞAkðmÞ ¼

�

Ty � �f :

The optimal �lðmÞ can be numerically calculated according to the equations

XM
m¼1

�lðmÞ ¼ Ew and
XNRx

k¼1

AkðmÞ
1 þ�lðmÞAkðmÞ ¼

�� ð5Þ

where �� ¼ �
Ty��f, �lðmÞ, and �� are inversely proportional. This optimization

procedure is an iterative water-filling algorithm [5]. Finally, we can obtain the

energy spectrum of the l th optimal SIMO waveform, Wl ¼ ½wlð1Þ;wlð2Þ; . . . ;
wlðMÞ�T by jwlðmÞj2 ¼ �lðmÞ. For the MIMO waveform matrix W, we calculate

multiple individual SIMO waveforms as W ¼ ½W1; W2; . . . ; WTx�.

4 Simulation result

In this section, we present simulation results showing the performance of the multi-

objective optimization algorithm (MO). For the computer simulations, the random
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target signatures are generated in two different ways. The first model sets have

ESV’s generated from colored spectra. The second model sets have ESV’s

generated from flat (white) spectra. Also, we use the following system parameters.

The number of target hypotheses H is 4, the discrete spectral waveform dimension

M is 40, the measurement noise power �2 is normalized to 1, and the waveform

energy allocation varies from 10�4 to 101 energy units. The probability of detection

is calculated over 20,000 Monte Carlo trials. Based on the given system parameters,

we evaluate the probability of detection in determining the true target transfer

function for three different waveform algorithms and compare their performances

in Figs. 2 and 3. The first waveform is a wideband waveform having a flat energy

distribution across the transmission band, the second waveform is the waveform

based on the sum of spectral variance (SSV) of [4], and the last waveform is the

MO waveform that we propose in this letter. From the results, MO algorithm shows

the best performance among the three waveform algorithms both in the cases of

colored and non-colored target models. The results of Fig. 2 shows wider perform-

ance gain compared to that of Fig. 3 due to the more structured target spectra.

Fig. 2. Performance comparison in 4x4 MIMO radar system with
colored target models

Fig. 3. Performance comparison in 4x4 MIMO radar system with non-
colored target models
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5 Conclusion

We derived a MIMO waveform for classification via mutual information based on

energy spectral variance. The waveform was optimized by the multi-objective

optimization for the widely-separated MIMO radar model. The proposed method

showed the best results in computer simulations, including simulations based on

both flat and colored spectral models. As another advantage of the proposed

algorithm, the optimization procedure is performed by an iterative water-filling

algorithm whose computational load is very light. In this letter, we set the

weighting factors Ck of (3) to unity for simplicity. However, it is also an interesting

problem to find the best combination of the weighting factors since the factors are

depending on the degree of importance of each MIESV metric and are related with

the MIMO radar channel. This will be our future research topic.
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