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Abstract: The waveform algorithm for active target classification or iden-
tification based on spectral variance has been studied in various pieces of
literature. The algorithm was extended for widely-separated MIMO Radar
system to take advantage of spatial diversity gain by Bae et al. However,
the MIMO waveform can be improved further by considering multiple
objective functions from the multiple target paths. In this letter, we optimize
the MIMO waveform for target identification system by maximizing the
multiple objective functions. We show simulation results to compare the
proposed algorithm to other MIMO waveform design methods.
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1 Introduction

Goodman et al. derived a classification waveform algorithm for enhanced target
classification by defining mutual information based on energy spectral variance
(MIESV) across the transfer functions of the various target hypotheses in [1, 2, 3].
Energy spectral variance (ESV) quantifies the statistical variance over a set of
finite-duration target transfer functions. The details on the use of MIESV for
classification task are described in [2, 3]. Bae et al. extended the MIESV algorithm
for multiple-input, multiple-output (MIMO) radar by adding the spectral variance
of the monostatic target impulse response and the spectral variances of the bistatic
target impulse responses in [4] and showed the diversity gain in MIMO radar
simulations.

In a MIMO radar system, multiple waveforms from widely separated radars are
transmitted and reflected by a target. Then, the reflected waveforms are captured
and combined by multiple radar receivers. Each single waveform is simultaneously
captured by multiple radar receivers. For single-input, multiple-output (SIMO)
waveform optimization, the single waveform affects the observations of the multi-
ple radar receivers as shown in Fig. 1, and the waveform optimization can be
performed by maximizing multiple objective functions based on the multiple
observations. In addition, MIESV has the form of mutual information, and a
MIMO waveform can be designed from the sum of the multiple mutual information
measures. This information measure for each MIMO path is a function of the
waveform parameters. Thus, we propose a MIMO classification waveform method
based on multi-objective optimization (MO).

2 Monostatic radar model

We consider a stochastic extended target model for a particular target j, according
to [2, 3]

V(@) = w(t) = h;(t) + n(?) (1)
where * denotes convolution, the target hypothesis index j=1,2,...,H, y(¢) is
the received observation with duration 7, w(?) is a finite-energy waveform with
duration 7y, n(¢) is zero-mean receiver noise process with power spectral density
(PSD) P,(f), and the random target /;(¢) is a wide-sense stationary process with
PSD Sj,(f). For a finite-duration stochastic target model, we adopt a finite target
model g;(#) = a(t)h;(t) where a(?) is a rectangular window function of duration 7,
[3]. The frequency-domain system model that results from the Fourier transform is

y(f) = w()g,(f) + n(f)

where g;(f) is a finite-energy process with zero-mean [3]. The classification
waveform optimization based on MIESV is expressed by
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Fig. 1. SIMO radar waveform transmission and reception: The Ist
radar transmits a waveform, and all radars receive a reflection

max MIESV
subject to / IW(OIPAf < Emax @
B

where MIESV =T, [, In[1 + %]d 'f, Emax is a given waveform energy

constraint for w(f), the ESV for a random target model is Skr(f) =
2

Z}ilpr(H,)a;j( - ’Z;.ilPr(Hj) o2 (/)| » Pr(H;) is the probability of the ;"

target hypothesis, and aé( f) is the spectral energy of the j” target. Now, let us

define a MIMO radar signal model for use in waveform design.

3 MIMO radar model

For MIMO radar model, the observation of the k™ radar receiver due to the
waveform from the /” radar transmitter is defined as

Yu(f) = wi(gu(f) + nu(f)

where the radar receiver index is k = 1,2,..., Nrx, the radar transmitter index is
I=1,2,...,N1x, and g i f) is a finite-energy process with zero-mean [3]. Here,
we have Npyx X N1x number of observations. Each observation includes one of H
target impulse responses. The MIMO waveform is composed of Npx SIMO wave-
forms since the multiple waveforms from the different transmit radars are separable
in the radar receivers. First, let us consider the SIMO waveform for the 1% radar.
Fig. 1 shows that the first radar transmits a waveform, and its reflections are
captured by the Nry radar receivers. From this result, an optimization method based
on Ngx objective functions is derived.

Each of the objective functions is individually defined by an MIESV metric.
Thus, the SIMO waveform optimization from the /** radar is described by multiple-
objective optimization problem as

N 2

[Wi (OIS (f)
CGT, { In|]l+ ————=

maxkz=1 s y/z; n[ + P/

Jor
subject to /le(f)lzdf < Emax 3)
B

where Sy(/) = Y7L, Pr(H oy (f) = ‘ >t Pr(H)), Jo? (f) " and G defines

the weights of the combination. We can define the weight factors depending on the
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degree of importance of each MIESV ; for a given /. However, in this letter, we
set the weighting factors to unity for simplicity.

To enable computer simulation, we now define a discrete optimization problem
from (3) as

oy M Q(m) Sy (m)
max; T, len[l + 711,:;”:;1;1 ]Af

M
subject to ZQl(m) <E, 4)
m=1
where m is the index of a discrete frequency bin after the transmit bandwidth
has been divided into intervals, Af is the width of a single frequency bin,
|w;(m)|* = Q;(m), and E,, is a given waveform energy constraint for w;(m). The
scalar sum of the multiple objective functions is a concave function since each of
the objective functions is In| - | which is concave. The concavity property of the
scalar sum of In|-| was also discussed in [5]. Thus, we define a Lagrangian
problem and derive the optimization procedure as

L(X,Ql(m))
Nrx M 0 s “

By applying the first derivative to L(1, Q;(m)) with respect to Q;(m), we obtain

Ski(m)

8L(i Q,(m)) Ny T, P, (m)
Af+2
0Qu(m) kZ 14 Qum) P 4
N
e Ai(m)
= 2 T a7

2
where  Sy(f) = X%, Pr(H o} (f) - ‘Zj‘zlpr(ﬂj) o2 f)( and  Ap(m) =

TS%(’('Z) . For the maximum value of the linear sum of multiple objective functions,
yn

let us apply %&fg’)) =0 to get

OL(, Q(m)) _ WS Ar(m) o
oQ(my 0= Z L+ Qi(m)Ai(m) — Ty, -Af”

The optimal €,(m) can be numerically calculated according to the equations

ZQ(m) E, and % Am)____ (5)
! 1+ Q (m)Ax(m)

where 1= ﬁ, Q;(m), and i are inversely proportional. This optimization
procedure is an iterative water-filling algorithm [5]. Finally, we can obtain the
energy spectrum of the 1" optimal SIMO waveform, W; = [w;(1),w;(2),...,
wi(M)]T by |wl(m)|2 = Q;(m). For the MIMO waveform matrix W, we calculate

multiple individual SIMO waveforms as W = [W, W>, ..., Wix].

4 Simulation result

In this section, we present simulation results showing the performance of the multi-
objective optimization algorithm (MO). For the computer simulations, the random
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Performance comparison in 4x4 MIMO Radar System
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Fig. 2. Performance comparison in 4x4 MIMO radar system with
colored target models
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Fig. 3. Performance comparison in 4x4 MIMO radar system with non-
colored target models

target signatures are generated in two different ways. The first model sets have
ESV’s generated from colored spectra. The second model sets have ESV’s
generated from flat (white) spectra. Also, we use the following system parameters.
The number of target hypotheses H is 4, the discrete spectral waveform dimension

2 is normalized to 1, and the waveform

M is 40, the measurement noise power o
energy allocation varies from 10* to 10! energy units. The probability of detection
is calculated over 20,000 Monte Carlo trials. Based on the given system parameters,
we evaluate the probability of detection in determining the true target transfer
function for three different waveform algorithms and compare their performances
in Figs. 2 and 3. The first waveform is a wideband waveform having a flat energy
distribution across the transmission band, the second waveform is the waveform
based on the sum of spectral variance (SSV) of [4], and the last waveform is the
MO waveform that we propose in this letter. From the results, MO algorithm shows
the best performance among the three waveform algorithms both in the cases of
colored and non-colored target models. The results of Fig. 2 shows wider perform-
ance gain compared to that of Fig. 3 due to the more structured target spectra.
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5 Conclusion

We derived a MIMO waveform for classification via mutual information based on
energy spectral variance. The waveform was optimized by the multi-objective
optimization for the widely-separated MIMO radar model. The proposed method
showed the best results in computer simulations, including simulations based on
both flat and colored spectral models. As another advantage of the proposed
algorithm, the optimization procedure is performed by an iterative water-filling
algorithm whose computational load is very light. In this letter, we set the
weighting factors Cy of (3) to unity for simplicity. However, it is also an interesting
problem to find the best combination of the weighting factors since the factors are
depending on the degree of importance of each MIESV metric and are related with
the MIMO radar channel. This will be our future research topic.
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