0-7803-8234-X/04/$17.00 © 2004 IEEE

STAP Training through Knowledge-Aided
Predictive Modeling

Nathan A. Goodman and Prashanth R. Gurram
Department of Electrical and Computer Engineering, The University of Arizona
1230 E. Speedway Blvd., Tucson, AZ 85721
goodman@ece.arizona.edu

Abstract — In this paper, we investigate a spectral-domain
approach to estimating the interference covariance matrix used
in space-time adaptive processing. Traditionally, an estimate of
the interference covariance matrix is obtained by averaging the
space-time covariance matrices of multiple range bins.
Unfortunately, the spectral content of these data snapshots
usually varies, which corrupts the covariance estimate for the
desired range. We propose to use knowledge sources to identify
angle-Doppler spectral regions having the same underlying
scattering statistics. Then, we use real-time data to form a
synthetic aperture radar image, which is inherently an estimate
of non-moving ground clutter. We then average the SAR pixels
within each homogeneous region. The resulting clutter power
map is used, along with knowledge of the radar system and
scenario geometry, to compute the interference covariance
matrix. Using simulated data, we demonstrate the potential
performance of such a technique, demonstrate its dependence on
accurate space-time steering vectors, and provide an example of
using data to compensate for imperfect knowledge.

1. INTRODUCTION

Conventional space-time adaptive processing (STAP)
training requires significant sample support for acceptable
performance [1-3]. When training data from nearby range
bins are independent and identically distributed, a good
estimate of the interference covariance matrix can be obtained
by averaging covariance matrices formed from data snapshots
taken from multiple range bins. Reduced-rank methods
reduce the sample support necessary for covariance training,
but can still suffer from poor covariance estimation in non-
stationary clutter and dense target environments [4-5].

In this paper, we present preliminary analysis on an
alternative training method using known properties of the
scattering background. In this method, we propose to use
knowledge of the clutter scene to perform a priori
identification of regions over which the scattering statistics are
homogeneous. Then, we propose to use the boundaries of
these homogeneous regions along with real-time synthetic
aperture radar (SAR) imagery to estimate clutter’s
range/cross-range power profile. Due to the speckle effect,
SAR pixels cannot be used directly as an estimate of clutter.
Instead, speckle is removed by averaging all SAR pixels
within each of the regions identified as being homogeneous.
Then, the averaged clutter profile is transformed to the clutter
covariance matrix based on predictable space-time steering

vectors. Finally, we use real-time data to compensate for
errors in the clutter covariance calculation due to finite-
precision knowledge of the radar system parameters and flight
geometry.

In this paper, we present a description of our proposed
technique and initial results on some of the hurdles that must
be overcome in order to achieve good performance. In
Section II, we describe our underlying algorithm in more
detail. In Section III, we present our simulated results. We
show that in the limiting case of perfect knowledge, our
approach produces near-ideal performance. We also list some
specific assumptions that are inherent in the claim of perfect
knowledge. @ We present analysis on the performance
degradation that is observed when the knowledge used to
compute the space-time steering vector for each clutter patch
is imperfect. Specifically, we analyze the situation where we
have imperfect knowledge of the radar platform’s crab angle.
We then present an example of how data can be used to
compensate for these unknowns. This example involves using
superresolution to estimate the space-time clutter ridge, which
is then used to estimate crab angle. The estimated crab angle
is then used to compute improved steering vectors that nearly
restore the perfect-knowledge performance. In Section IV, we
discuss some of the future research directions that we envision
for this technique, and in Section V we make our conclusions.

II. SAR-Based Spectral Averaging Approach

Currently, STAP training always occurs directly in the
measurement domain [1-2].  Multiple space-time data
snapshots are taken from range bins other than, but usually
nearby to, the current range under test (RUT). These
snapshots are then used to form the sample covariance
estimate of the interference covariance matrix according to 1]

R, =3 da M
N,

s i=1

where d, is the i secondary data snapshot, N; is the number of
secondary data snapshots, and the superscript H denotes
conjugate transpose. Once an estimate of the interference
covariance is obtained, the (estimated) optimum weight vector
for detecting a target is well known as
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where x is an arbitrary constant and s is the space-time
steering vector for a moving target with a given radial velocity
and along-track position.

If the number of pulses in a coherent processing interval
(CPI) is M, and the number of spatial channels is N, then the
number of space-time measurements is MN, and the
dimension of the covariance matrix estimate in (1) is MN by
MN. If 2MN independent and identically distributed data
snapshots are available for performing the estimate in (1), then
performance approaches the ideal, known-covariance case to
within about 3 dB [3]. Unfortunately, this performance level
can rarely be achieved in practice due to non-stationarity of
the training data. In reality, the along-track scattering profile
of ground clutter varies with range, as does the received power
due to its dependence on the fourth power of range, R*.
Additional targets within the training region also often corrupt
the covariance estimate [6], and aircraft crab [1,6] and non-
linear arrays [7] cause the space-time clutter ridge to vary with
range. Some discussions of real-world effects and their
impacts on STAP performance can be found in [2,6].

Although the above sample matrix inversion (SMI)
technique can suffer from degraded performance due to non-
stationarity of the training data, there are some benefits to the
approach that should be mentioned. Because the interference
statistics are estimated from real-time data, any jammers that
are present will also be estimated in the training process.
Hence, the SMI approach inherently estimates the statistics of
clutter, additive white gaussian noise, and jammers in one
well-defined process. The SMI approach also inherently
includes channel mismatches, or other system characteristics,
in the covariance estimation, although mismatches will still be
present in the target steering vector, s.

An alternative method of computing the interference is
possible if the clutter RCS background and platform
kinematics are known. This approach is usually used to
calculate the true covariance matrix for performance analysis
in simulated scenarios. If a data sample collected by the radar
system at some time, 7, and along-track spatial position, r,, due
strictly to the return from ground clutter is d, (t, rx) , then the

covariance of two measurements can be represented as

R.(7.2) = E[ d.(t.r,)d; (t+7.5,+ 7))
. 3
= [o, (x)h(t,r, x) K" (t+7,1, + g, x)dx
X
where 7 and y are the delay and spatial separation,
respectively, between the two measurements, o, (x) is the
along-track clutter RCS profile within a range bin, h(t,rx,x)

is a function describing the normalized measurement obtained
at time, ¢, and spatial position, ,, due to a scatterer located at x
(azimuth), and the integration is performed over the azimuth
illumination width of the RUT. When the integration in (3) is

approximated with a summation, and the received signal is
sampled in space and time, the matrix representing all space-
time lags is the clutter covariance matrix presented in [1]:

N, _
R, = kzlo-kvkvllri )

where N, is the number of clutter patches, vy is the space-time
steering vector to the k™ patch, and o, is the received per-
element, per-pulse power for the ¥* patch. Although it is
impossible in practice to obtain perfect knowledge of the o} ’s

in (4), a priori knowledge could be used to help obtain an
estimate of the observed clutter scene. This estimate could
then be used in conjunction with accurate knowledge of
platform kinematics to compute an estimate of the clutter
covariance matrix. )

We first consider estimation of the clutter power profile
(the o} ’s) in (4). To begin, we point out that SAR inherently

provides an estimate of ground clutter. SAR creates 2 map of
stationary-scatterer reflectivity versus range and azimuth.
Unfortunately, the values in a SAR image cannot be used in
(4) directly due to the speckle phenomenon — each pixel in a
SAR map represents the sum of many complex scatterers
within a resolution cell; hence, a single SAR pixel likely does
not represent its true average scattering value. However, if
multiple SAR pixels from the same surface type are available,
they can be averaged to get an accurate, representative value
of that surface’s RCS. For example, the boundaries of a
grassland, lake, or agricultural area could be identified, and we
would expect the scattering within the boundaries of one of
these features to adhere to the same probability distribution. If
the boundaries of such homogeneous regions, or segments,
can be identified, then all pixels within the boundaries can be
averaged. Then, each SAR pixel can be replaced with its
region’s average power value for use as a clutter patch power
coefficient in (4).

Reflections from ground clutter produce a random signal at
the radar receiver. The signal is random because, although the
average power reflected from a clutter patch may be known,
the speckle phenomenon causes the scattering from any single
patch to be random. Hence, the average RCS profile is really
the power spectral density of the clutter random process.
Furthermore, just as the autocorrelation function and power
spectral density are equally valid representations of the same
random process in the time and frequency domains,
respectively, the clutter covariance matrix and range/cross-
range RCS profile are equally valid representations of clutter
in the data and spectral domains. However, both
representations are usually not known, and the data-domain
representation is more easily computed. In general, it does not
make sense to try to estimate the random process in the
spectral domain because we need average power but it is not
clear which spectral components it is appropriate to average
together. Hence, we arrive at our prior conclusion that it is not
possible to directly use a SAR image as the clutter power
spectral density. =~ . - -
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Fig. 1. Block diagram of the proposed, spectral-averaging-based processing architecture.

Our proposed technique, however, does in fact perform
averaging of the clutter random process in the spectral domain
rather than in the measurement domain as in conventional
STAP. Pixels that adhere to the same probability distribution
are averaged to reduce speckle, but as just mentioned above,
we must identify regions over which averaging is appropriate.
We suggest that this is an ideal use of knowledge-aided radar
signal processing. We suggest that a priori knowledge from
many sources — previous SAR surveys, DTED, land cover,
and other known features — could be used to predict
homogeneous spectral regions prior to SAR image formation.
Then, these segmentations could be used to average a real-
time SAR image and arrive at a spectral-domain
representation of clutter.

Of course, in order to transform between the spectral and
data domains, we see in (4) that space-time steering vectors
are needed. Ideally, these can be computed based on available
ownship data. The temporal steering vectors for each clutter
patch (SAR pixel) are known since they are used to form the
SAR images on each channel. The spatial steering vectors can
also be computed, but our initial experiments have shown that
performance is very sensitive to even small errors in ownship
knowledge. For example, the clutter notch formed by the
optimum space-time processor is very narrow, and imperfect
knowledge of array misalignment, or crab, can cause the
clutter notch to miss the actual clutter ridge. = Therefore, we
conclude that real-time data must be used to adaptively correct
for imperfect knowledge of crab angle, channel imbalance, or
other factors.

Figure 1 shows a block diagram of the proposed processing
approach. Knowledge sources are used to predict the
observed clutter scene for a known flight profile. Then, this
prediction is used to divide the observed scene into
homogeneous scattering regions. Data collected by the radar
system are used to form SAR images, which are then
segmented according to the a priori predictions that have been
adjusted to compensate for any deviations in the flight

scenario. After the pixels within each segment have been
averaged, the pixel values can be used as the power
coefficients in the covariance matrix calculation. The data are
also used to estimate space-time steering vectors. For
example, as we will demonstrate in the next section, real-time
data can be used to obtain an accurate estimate of the radar
platform’s crab angle, which can then be used in the steering
vector computation. After estimation of the clutter power
profile and steering vectors, the clutter covariance matrix is
calculated and a known noise floor is added.

III. SIMULATIONS

In this section, we demonstrate the potential performance
of the technique described above. We show that under ideal
conditions, performance is significantly better than the SMI
method, but in order to achieve good performance in practice,
very accurate knowledge of the space-time steering vectors for
the clutter patches is required. This, in turn, places strict
requirements on the accuracy of ownship and scenario
knowledge. The required accuracies probably cannot be met
without using real-time data, so we also demonstrate an
example of using real-time data to estimate platform crab
angle.

Figure 2 demonstrates that the spectral-averaging-based
approach provides near-optimal performance in the limiting
case of perfect knowledge. A STAP simulation was
performed with parameters similar to those given in [7]. The
data cube, calculated using the clutter patch model of [1],
consisted of noisy space-time data for 2MN range bins plus the
RUT and a few guard cells. The aircraft crab angle was 3.5
degrees. Figure 2 shows SINR loss for the known-covariance
case, SMI, and our proposed approach. The heterogeneity of
the clutter scene and the range-dependent clutter locus reduce
SMI performance below the 3-dB loss that would be expected
for 2MN snapshots of independent and identically distributed
data. The proposed approach, however, achieves performance
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Fig.2. SINR Loss for the ideal, SMI, and proposed (KB) covariance
estimates under perfect scenario knowledge.
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Fig. 3. The (a) ideal, (b) speckled, (c) SAR-reconstructed, and
(d) averaged clutter power profiles.

that is indistinguishable from the ideal, known-covariance
performance.

In order to achieve the performance shown in Fig. 2,
perfect knowledge of the radar system and scenario were
assumed. In particular, we assumed that the noise level and
gain of each channel were known constants, that aircraft crab
angle was known and constant throughout the CPI, and that
the scattering coefficients of the clutter patches were circularly
complex Gaussian random variables with known variance.
Since the underlying variance of each clutter patch was
known, homogeneous scattering segments could be identified
perfectly, resulting in optimal averaging performance.
Furthermore, there were no moving targets in the data. All
other system parameters, such as altitude or pulse repetition
frequency, were also known.

Figure 3 shows the range/cross-range scattering profile
that was used. In Fig. 3a, the ideal clutter RCS profile is
shown. In Fig. 3b, we show the amplitude of the scattering
coefficients after the speckle phenomenon was added. In
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Fig. 4. SINR Loss for the ideal, SMI, and proposed (KB) covariance
estimates under incorrect platform crab knowledge.

Fig. 3c, we see the SAR image formed by the first spatial
channel, and in Fig. 3d, we see the resulting power profile
after the known homogeneous regions are averaged.

In practice, the available ownship and scattering
knowledge will have limited accuracy. For example, the
platform’s crab angle will be known approximately, but not
perfectly. Furthermore, we have found that our approach is
sensitive to imperfect knowledge assumptions. Figure 4
demonstrates such sensitivity. In producing Fig. 4, the data
cube was generated for a platform with an actual crab angle of
3.5 degrees. In computing the space-time steering vectors
necessary for transforming the clutter power coefficients to the
clutter covariance matrix, it was assumed that the platform’s
INS reported a crab angle of 3.3 degrees. As can be seen from
Fig. 4, this slight error drastically reduces performance. The
reason for reduced performance is that the clutter notch that is
formed by the optimum filter is very narrow (the clutter ridge
is infinitely narrow since we have not yet modeled any
intrinsic clutter motion). Even small errors can cause the
clutter notch to miss the clutter ridge entirely; hence, the
clutter is severely undernulled.

Figure 5 shows the eigenvalues of the ideal, SMI, and
knowledge-aided interference covariance matrices. It is seen
that the knowledge-aided approach represents the true
eigenvalues of the clutter-plus-noise subspace more accurately
than SMI despite the fact that SMI shows better performance
in Fig. 4. This is further evidence that the poor performance
of the knowledge-aided approach in Fig. 4 is due to inaccurate
transformation from the spectral domain to the data domain.
In other words, the steering vectors are the root of the
problem, not the clutter patch power coefficients.

Figure 4 demonstrates that the spectral-averaging-based
approach will not be effective without using real-time data to
estimate practical factors that affect STAP performance.
While SAR processing should produce a reasonably effective
clutter power profile, performance will only be as good as the
space-time steering vectors that transform that power profile
to a covariance matrix.
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Fig. 5. Eigenvalues of the ideal, SMI, and proposed (KB) covariance
matrix estimates under incorrect platform crab knowledge.

In the following, we present an example of how real-time
data might be used to estimate system characteristics that
affect STAP performance, and how those estimates could be
used to restore the performance of the proposed approach. In
the next simulation, the true crab angle for the platform was
again 3.5 degrees. However, in this example we used the
traditional sample covariance matrix to locate the clutter ridge.
Then, we computed the crab angle that would be required to
produce the estimated clutter ridge and used the estimated crab
angle in calculating the space-time steering vectors.

Unfortunately, a simple Fourier-based estimate of the
clutter ridge is not sufficiently accurate. This approach
produces a crab estimate with accuracy on the order of the
angle subtended by a single resolution cell, but we require
accuracy that is on the order of the width of the clutter notch.
In order to achieve this accuracy, we have used a 2D
superresolution approach to locate the clutter ridge in angle
and Doppler.

The crab estimation process is as follows. First, we
compute the traditional covariance matrix estimate as in (1).
Then, we use a finite-beamwidth version of Brennan’s rule [1]
to estimate the dimension of the clutter subspace, known as
clutter rank, r.. We perform an eigen-decomposition of the
the sample covariance matrix, and divide the eigenvectors into
the clutter and white-noise subspaces:

U=[ul u - u,

=[Uc Un]

Uy, 41 “MN]

(&)

The covariance matrix corresponding to the white-noise-only
subspace is ’

R,=U,U;, (©)

and the superresolution estimate of the clutter spectrum at
Doppler frequency, f, and spatial frequency, £, is
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Fig. 6. SINR Loss for the ideal, SMI, and proposed (KB) covariance
estimates. The KB covariance matrix was corrected using the
superresolution estimate of crab angle.
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S, (farfi)= M

where Vv(f;,f,) is the steering vector for the given angle-

Doppler frequency component. Once the angle-Doppler
frequency spectrum is obtained, we select the brightest point
in the spectrum, note its spatial and Doppler frequencies, and
compute the crab angle. In the future, we intend to investigate
other methods for computing crab angle from the clutter
spectrum, such as averaging the crab estimates from multiple
points or performing a least-squares fit to an elliptical clutter
locus.

An interesting point to make is that, in this part of the
problem, strong clutter returns are actually beneficial. For the
purposes of estimating crab angle, clutter acts as the desired
signal; hence, increased clutter power improves the accuracy
of the clutter ridge estimate. In the simulations in this paper,
the clutter-to-noise ratio (CNR) for the RUT is approximately
45 dB, with some variability in other range bins due to
changing clutter background. With this CNR and using the
above approach, we have been estimating crab angle with
accuracies on the order of a few thousandths of a degree.
With this accuracy, we can restore performance as shown in
Figure 6.

IV. COMMENTS AND FUTURE WORK

We have demonstrated that in order to transform a SAR-
based estimate of the clutter power spectrum into an accurate
estimate of the clutter covariance matrix, the space-time
steering vectors used to make the transformation must be
highly accurate. The above example demonstrates how data
might be used to obtain an accurate estimate of platform crab
angle. There are, however, many other characteristics that
will need to be estimated in a real implementation.
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Another practical aspect that must be estimated is channel
mismatch [2]. Each spatial channel consists of its own
receiving chain. Therefore, although careful calibration is
usually performed, each channel usually has a slightly
different gain (amplitude and phase) and noise level.
According to [2], the noise level can usually be estimated
quite accurately, and differences can be modeled as differing
channel gains. Although channel mismatch is not always a
factor in SMI performance, we believe our approach will be
more sensitive to imperfect calibration; hence, we will be
investigating this factor.

Other sources of imperfect knowledge include channel
mismatch due to imprecisely placed antenna elements, moving
targets in the SAR image used to estimate the clutter power
spectrum, and variable platform speed. Each of these factors
must be accounted for in our knowledge-aided approach.
Note, however, that several techniques currently being
developed to mitigate the problem of moving targets in the
training data can also be applied to our approach. In fact,
techniques such as in [6], where range cells having roads
(which are then more likely to contain targets) are removed
from the training data, are simple to implement in our
approach. Cells with known clutter discretes, or that are likely
to contain moving targets, can simply be ignored in the
spectral averaging process.

Intrinsic clutter motion (ICM) is another factor that will
affect the performance of our technique. However, at this
time it is not clear that ICM will have a negative effect on our
technique compared to the SMI technique. We argued above
that our approach is sensitive to errors in the space-time
steering vectors because we were attempting to place a very
narrow notch on a very narrow clutter ridge. ICM effectively
increases the width of the clutter ridge, requiring a wider null
to be placed in the filtering process. A wider null can be
achieved simply by using a covariance matrix taper [8-9];
hence, accounting for ICM in our algorithm should be
straightforward. Moreover, if the clutter ridge has finite
width, then small misalignments between the clutter ridge and
clutter notch will cause proportionately smaller degradation.
Hence, errors in the space-time steering vectors caused by
small phase errors due to channel mismatch or crab angle
should have reduced impact.

We also note that our current architecture has no method
for estimating and rejecting jammers. Future work must
include a method for using data to estimate jamming
parameters and for incorporating those estimates into the
interference covariance matrix. Finally, a more fundamental
framework for integrating the knowledge-aided covariance
with data-based estimates is desired. This framework would
help to incorporate all the possible compensations that need to
be performed, would make jammer estimation an integral part
of the processing architecture, and would make future
improvements more feasible.

V. CONCLUSIONS

In this paper, we have described a process for estimating
the clutter power spectrum from a priori identification of
homogeneous scattering regions and from real-time SAR
imagery. The estimated clutter spectrum is then transformed
to a clutter covariance matrix using the space-time steering
vector for each SAR pixel. We have also acknowledged that
this approach is very sensitive to errors in the steering vectors,
especially when ICM is small or nonexistent such that the
clutter ridge is very narrow. In this case, small errors cause
severe clutter undernulling.

We have also proposed that data-based compensations
could be performed to account for finite-precision knowledge
that leads to steering vector errors. The combination of data-
based adaptivity with knowledge-aided estimation of the
clutter spectrum holds potential for excellent performance.
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