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Abstract—Traditional radar systems rely on a predefined
suite of waveforms and post-measurement signal processing
to achieve such goals as target detection, classification, and
tracking. Cognitive radar (CR) is a newly proposed framework
in which the radar actively interrogates the propagation channel
and adapts its operating parameters in order to maximize
performance. We apply CR to a target classification problem
by calculating custom waveforms that maximize the information
received from the target echoes. A new MIMO waveform is
proposed which maximizes the mutual information between a
Gaussian random target and the received data under AWGN.
The results indicate that the new frequency-domain formulation
offers superior performance compared to both a non-adaptive
approach and an ad hoc application of spectral waterfilling to
the MIMO setting.

I. INTRODUCTION

Bell applied information-theoretic principles in [1] to prove
that the maximum mutual information between a Gaussian-
distributed target impulse response and the received target
echoes, given the transmitted waveform, was achieved via a
spectral waterfilling approach. Since Bell’s work was pub-
lished, waveform design criteria based on optimizing SINR
have also emerged. Pillai, et al. [2] found an eigenfunction
yielding the optimum-SINR waveform for target detection.
This solution has been extended to an N -target identification
problem [3] and to include colored noise and non-zero colored
clutter [4].

Bell’s information-theoretic approach has also received ex-
tensive treatment. Leshem, Naparstek, and Nehorai [5] de-
veloped a waterfilling technique for resolving and tracking
multiple targets using multiple antenna beams, each with a
different temporal waveform. Yang and Blum [6] developed an
optimum time-domain solution for MIMO radars which max-
imizes the mutual information between a multistatic Gaussian
target impulse response and the MIMO received signal vector.
Unfortunately, it is not clear how to use the results of [6] to
obtain the Toeplitz matrix structure necessary for a physical
waveform.

The concept of intelligent surveillance systems has grown in
parallel to the development of adaptive waveforms. Traditional
radar systems rely on a predefined suite of waveforms and
post-measurement signal processing to achieve such goals as
target detection, classification, and tracking. These systems

must therefore adapt to difficult or complex propagation envi-
ronments in a reactive, post hoc manner. Cognitive radar (CR)
is a newly proposed concept [7] wherein the radar proactively
interrogates the radar channel and adapts its parameters in
real-time. CR depends upon a Bayesian model of the radar
channel [7], [8] to iteratively update its knowledge—and act
upon that knowledge—with each transmission. For example,
a CR system can accomplish target recognition very effi-
ciently by adapting its transmitted waveforms to maximize
mutual information based on all prior knowledge. In such a
scheme, the system develops custom radar waveforms based
on previously received information and iteratively updates
target classification likelihoods until a hard decision can be
made. It has been shown that such a sequential hypothesis
testing (SHT) approach results in correct target recognition
in a monostatic setting with fewer waveform transmissions—
and therefore less expended time and energy—than for a non-
adaptive approach [9].

In this paper, we extend the adaptive-waveform SHT
approach to include bistatic target echoes in a multiple-
input, multiple-output (MIMO) radar system. We introduce
a frequency-domain MIMO waveform that optimizes mutual
information, between a Gaussian target process and the re-
ceived data. This approach is applied sub-optimally to the
target identification problem under both deterministic and
random target models, and the results are compared to ad hoc
extensions of the waterfilling solution presented in [9].

II. FREQUENCY-DOMAIN WAVEFORM DESIGN FOR

SINGLE-INPUT, MULTIPLE-OUTPUT (SIMO) SYSTEMS

A. Signal Model

The derivations in this section assume a single-input,
multiple-output (SIMO) system consisting of one co-located
transmitter/receiver pair and a set of receivers located else-
where. In Section III, a MIMO formulation is explored.

Let the K × 1 vector X represent the spectrum of a
transmitted waveform vector at K discrete frequencies across
the waveform’s bandwidth. Likewise, Gq shall represent the
target transfer function for the path between the transmitter
and qth receiver, and the received waveform at receiver q
shall be denoted by Yq. For notational convenience, we also
define χ = diag(X) such that the spectral components of

 

 

1-4244-1539-X/08/$25.00 ©2008 IEEE 

 

Authorized licensed use limited to: The University of Arizona. Downloaded on April 5, 2009 at 16:24 from IEEE Xplore.  Restrictions apply.



the waveform reside on the diagonal of χ (the diag operation
places an N -element vector on the diagonal of an N × N
matrix, with zeros in all other positions of the matrix).

From the forgoing, we can see that the received vector Y
under AWGN can be expressed as

Y =




Y1

Y2

...

YQ


 =




χG1 + N1

χG2 + N2

...

χGQ + NQ


 . (1)

The noise vectors Nq are assumed to be zero-mean complex
Gaussian-distributed random vectors with covariance matrix
I. The transfer functions Gq may be random or deterministic,
depending on the problem being considered.

B. Optimum waveform for Gaussian random target

In this formulation, we assume that the target transfer func-
tion Gq in (1) is a zero-mean complex Gaussian process with
covariance matrix Kq = E

[
GqGH

q

]
= diag(Ψq(fk)), where

Ψq(fk) is the power spectral density for the path between
the transmitter and receiver q. We define the total system
transfer function G = [GT

1 , . . . ,GT
Q]T with covariance matrix

K = blkdiag (K1, . . . ,KQ), where the blkdiag operator
creates a block-diagonal matrix of its matrix arguments. Our
goal is to calculate a waveform X that maximizes the mutual
information between the bistatic target transfer function, G,
and the received signal vector Y. Therefore, we have

I (G;Y) = H (Y) − H (Y|G) . (2)

where H() refers to the entropy of a random vector.
First, we will evaluate H (Y|G). Given the bistatic target

transfer function, the only random component of the received
signal vector is the AWGN. Therefore, the received data in
this case are Gaussian with a mean of XG and variance of
σ2. The entropy of such a random vector is

H (Y|G) = log
{

(πe)QK ∣∣σ2IQK

∣∣} . (3)

When not conditioned on a target transfer function, Y is
zero-mean Gaussian with covariance R = χKχH + σ2IQK ,
and so the entropy is

H (Y) = log
{

(πe)QK |R|
}

. (4)

Substituting (3) and (4) into (2), we obtain

I (G;Y) =
K∑

k=1

Q∑
q=1

log

{
1 +

|X (fk)|2 Ψq (fk)
σ2

}
. (5)

Next, we maximize (5) by the Lagrange technique with the
constraint on total transmitted energy according to

K∑
k=1

|X (fk)|2 = Es. (6)

Letting Pk = |X (fk)|2, we can write the objective function
as

J =
K∑

k=1

Q∑
q=1

log
{

1 +
PkΨq (fk)

σ2

}
+ λ

K∑
k=1

Pk. (7)

The derivative of (7) with respect to Pk is

∂J

∂Pk
=

Q∑
q=1

Ψq (fk) /σ2

1 + PkΨq (fk) /σ2
+ λ

=
Q∑

q=1

Ψq (fk)
σ2 + PkΨq (fk)

+ λ. (8)

We solve for Pk by equating (8) to zero and assuming an
arbitrary value for λ. A set of powers Pk that satisfy (6) is
then found by a numerical search for the correct λ. In the
case of a single receiver (Q = 1), this solution reduces to the
waterfilling solution presented in [1] and [9]. However, for
Q > 1, the solution does not reduce to a waterfilling form.

1) Application to the multi-hypothesis case with determin-
istic targets: The foregoing derivation yields an optimum
frequency-domain waveform under AWGN and a zero-mean
Gaussian random target model, but we require the ability to
calculate custom waveforms for a finite set of known target
hypotheses and deterministic transfer functions Gq(Hm). To
this end, we apply the optimization technique in a sub-optimal
manner by interpreting the set of power spectral densities
Ψq(f) in (8) as a spectral variance over the target set. For each
path q through the SIMO system, we calculate the spectral
variance to be

σ2
g:q(fk) = Ψq(fk)

=
M∑

m=1

|Gq,m(fk)|2 Pm −
∣∣∣∣∣

M∑
m=1

Gq,m(fk)Pm

∣∣∣∣∣
2

(9)

where Gq,m(fk) is the transfer function at frequency fk under
hypothesis Hm for path q.

2) Application to the multi-hypothesis case with random
targets: We must modify the spectral variance given in (9) if
we wish to model random targets with zero-mean Gaussian
transfer functions G̃q(Hm). In this case, each hypothesis is
a class of targets with realizations that depend on the class
statistics. Hence, we do not have known transfer functions, but
instead model each class as having a PSD for each bistatic
path. The form of (9) suggests a random-model counterpart
given by

σ2
g:q(fk) = Ψq(fk)

=
M∑

m=1

Ψq,m(fk)Pm −
(

M∑
m=1

√
Ψq,m(fk)Pm

)2

(10)

where Ψq,m(fk) is the power spectral density at the kth
frequency for the mth hypothesis over the qth path. In this
way, we can model the target transfer functions G̃q(Hm)
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under hypothesis Hm each as zero-mean complex Gaussian-
distributed random vectors with covariance matrix Kq(Hm) =
diag(Ψq,m(f)). For later notational convenience, we define a
covariance matrix K(Hm) which accounts for all receivers
under hypothesis Hm, taking the form

K(Hm) = blkdiag (K1(Hm), . . . ,KQ(Hm)) . (11)

C. Bistatic waterfilling waveform

We develop an ad hoc bistatic, frequency-domain waterfill-
ing solution similar to the solution presented in [9]. In this
method, we sum the spectral variance over all paths as

σ2
g(fk) =

Q∑
q=1

σ2
g:q(fk) (12)

where σ2
g:q(fk) is the spectral variance for the qth SIMO path

given in (9) or (10). The waterfilling solution for the transmit
spectrum X is given by

|X(fk)|2 =
(

A − σ2K

2σ2
g(fk)

)+

(13)

subject to the same energy constraint given in (6). The ‘+’
operator is defined such that (a)+ = max[0, a].

III. FREQUENCY-DOMAIN WAVEFORM DESIGN FOR

MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) SYSTEMS

A. Signal Model

A frequency-domain MIMO signal model similar to the
SIMO case discussed in Section II is developed here. We begin
by denoting the target transfer function between transmitter p
and receiver q as

Gp,q = [Gp,q(f1), . . . , Gp,q(fK)]T. (14)

All transfer functions for transmitter p can be grouped into a
vector taking the form

Gp = [GT
p,1, . . . ,G

T
p,Q]T, (15)

and the transfer functions for all transmitters are collected into
a PQK × 1 vector

G = [GT
1 , . . . ,GT

P ]T. (16)

Because the transfer functions are grouped by transmitter, the
transmitted waveform spectrum takes the form

X = [ XT
1 XT

1 . . . XT
1

. . . XT
P . . . XT

P ] T
, (17)

where the vectors Xp represent the waveform transmitted by
transmitter p. In (17), each Xp is repeated Q times in order
to form the vector X.

The received PQK × 1 data vector is then denoted as

Y = χG + N. (18)

where χ = diag(X) and N is AWGN with covariance matrix
σ2IPQK .

B. Optimum waveform for Gaussian random target

Here we develop a MIMO extension of the SIMO waveform
discussed in Section II-B. Much of the derivation is identical,
except the vectors and matrices take the MIMO form given
in Section III-A. The zero-mean Gaussian transfer function
between transmitter p and receiver q is denoted by Gp,q , which
takes the form of (14) and has covariance matrix Kp,q =
diag(Ψp,q(f)). The system transfer function G is therefore
given by (16) and has covariance matrix K = blkdiag(Kp,q).

Following the same logic as the SIMO derivation, and
letting Pp,k = |Xp (fk)|2, we must solve

∂J

∂Pp,k
=

Q∑
q=1

Ψp,q (fk)
σ2 + Pp,kΨp,q (fk)

+λ = 0, 1 ≤ p ≤ P (19)

subject to the constraint

P∑
p=1

K∑
k=1

|Xp (fk)|2 = Es. (20)

The procedure for solving (19) is similar to the procedure for
solving (8).

1) Application to the multi-hypothesis case with determin-
istic targets: The deterministic target spectral variance can
be extended to a MIMO system by slightly modifying of the
notation in (9) to include an index for transmitter p. We can
write

σ2
g:p,q(fk) = Ψp,q(fk)

=
M∑

m=1

|Gp,q,m(fk)|2 Pm −
∣∣∣∣∣

M∑
m=1

Gp,q,m(fk)Pm

∣∣∣∣∣
2

,

(21)

where Gp,q,m(f) is the transfer function over the path from
transmitter p to receiver q under hypothesis Hm.

2) Application to the multi-hypothesis case with random
targets: To apply this signal model to a set of random targets,
we need to interpret each transfer function Gp,q defined
in (14) as a zero-mean Gaussian-distributed random vector
G̃p,q(Hm) under hypothesis Hm. The random transfer func-
tion has covariance matrix Kp,q(Hm) = diag(Ψp,q,m(fk)),
where Ψp,q,m(fk) is the target power spectral density under
hypothesis Hm for the pth transmitter and the qth receiver.
The grouped transfer function G̃p(Hm) with structure similar
to (15) therefore has a PQK × PQK covariance matrix

K(Hm) = blkdiag(Kp,q(Hm)). (22)

We then calculate the spectral variance to be

σ2
g:p,q(fk) = Ψp,q(fk)

=
M∑

m=1

Ψp,q,m(fk)Pm −
(

M∑
m=1

√
Ψp,q,m(fk)Pm

)2

.

(23)
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C. MIMO waterfilling waveform

The ad hoc bistatic waterfilling waveform described in
Section II-C is easily extended to the MIMO signal model. We
define a spectral variance over the target set for transmitter p
as

σ2
g:p(fk) =

Q∑
q=1

σ2
g:p,q(fk), (24)

where σ2
g:p,q(fk) is the spectral variance over the target set for

the path between transmitter p and receiver q defined in (21)
or (23). The waterfilling waveform Xp for transmitter p is then
calculated according to

|Xp(fk)|2 =
(

A − σ2K

2σ2
g:p(fk)

)+

, 1 ≤ p ≤ P (25)

subject to the constraint given in (20).
We also explore an alternative constraint which divides

the transmitted energy equally among the transmitters. This
constraint takes the form

Es

P
=

K∑
k=1

(
A − σ2K

2σ2
g:p(fk)

)+

, 1 ≤ p ≤ P. (26)

There is an important difference in the waveforms resulting
from the constraints given in (20) and (26). Equation (20)
represents a global transmit energy constraint, so it is possible
for each of the p transmitters to contribute unequally to
the total transmitted energy. However, (26) requires each
transmitter to transmit a waveform with an equal fraction of
the globally constrained energy.

IV. SEQUENTIAL HYPOTHESIS TESTING FOR TARGET

CLASSIFICATION

A. Deterministic target model

In [9], the authors present an iterative method for target
classification based on the sequential probability ratio test
(SPRT) [10]. We apply the SPRT under the signal models
and waveform design techniques discussed previously for both
SIMO and MIMO systems. For each iteration of the test,
the waveform is determined via (19) or (25) and constrained
by (20). The alternative constraint (26) is also explored for the
MIMO waterfilling waveform.

Equation (18) defines the received data, and the likelihood
ratio (LR) is calculated between each pair of target hypotheses.
If the LR between a single target class and all other classes is
greater than some threshold, the test is terminated. Otherwise,
another iteration is performed.

In the deterministic model, the data conditioned on a given
hypothesis has non-zero mean and the randomness is due only
to the AWGN. Hence, the data are independent and the LR
for iteration k between target hypotheses Hi and Hj is

λk
i,j =

pi1(Y1)pi2(Y2) . . . pik(Yk)
pj1(Y1)pj2(Y2) . . . pjk(Yk)

P 1
i

P 1
j

. (27)

where pik is the pdf of the kth observation under the ith
hypothesis and Yk is the received waveform due to χk, the

kth transmission waveform. The factor P 1
i is the initial value

assigned to the probability of target hypothesis Hi, usually 1
M .

Under AWGN, the pdf is

pik(Yk) =
1

(πσ2)PQK
exp

[
− 1

σ2
(Yk − χkGi)

H (Yk − χkGi)
]

.

(28)

We define αi,j as the average rate of making an error by
choosing target hypothesis Hj when Hi is true. According to
[10], the threshold for terminating the SPRT is then reached
when

λk
m,j >

1 − αm,j

αm,j
∀ j �= m (29)

is met for some m. If another iteration is to be performed
because (29) is not met for any m, the probability P k+1

i of
Hi in iteration k + 1 is updated to be

P k+1
i = βpik(Yk)P k

i (30)

for hypotheses H1,H2, . . . , HM where β is a constant that
ensures the probabilities sum to unity. These target class
probabilities are then used to calculate the new waveform for
iteration k + 1.

B. Random target model

To apply the SPRT under a random-target signal model, a
different likelihood ratio test than (27) is required. The target
transfer function G in (18) is random but remains constant for
the duration of a single experiment. As a result, the received
waveform spectrum Yk for the kth iteration, taking the form
of the left-hand side of (18), is correlated with all previous
received waveform spectra Yk−1, . . . ,Y1. This correlation
requires the likelihood ratio between target hypotheses Hi and
Hj to be expressed in terms of the joint pdf of the spectra Yk

as

λk
i,j =

pi(Y1, . . . ,Yk)
pj(Y1, . . . ,Yk)

P 1
i

P 1
j

. (31)

It can be shown that the joint pdf for the kth iteration takes
the form

pi(Y1, . . . ,Yk) =∣∣Q−1
∣∣

(πσ2)kL |K(Hi)|
exp


− 1

σ2

k∑
j=1

YH
k Yk




× exp


 1

σ4


 k∑

j=1

YH
k χk


Q−1


 k∑

j=1

YkχH
k




 .

(32)

where L is the length of the received spectrum vector, and Q
is defined as

Q = (K(Hi))
−1 +

1
σ2

k∑
j=1

χH
k χk. (33)
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Because (31) represents the a ratio of joint pdfs for all data
since the beginning of the experiment, the updated class
probabilities are not calculated as in (30), but instead as

P k+1
i = βpi(Y1, . . . ,Yk)P 1

i . (34)

V. RESULTS

A. Deterministic targets

We have obtained scattering center data for three target
vehicle types for our experiments. In these models, a target
is represented by sets of scattering centers parameterized by
the elevation and azimuth angles relative to the target’s body
coordinates. Let φ be the elevation and θ be the azimuth.
These aspect angles can then be represented by a unit vector
u(θ, φ) pointing from the target coordinate origin to the radar’s
position.

In the scattering center model, the tuple consisting of the
target class, azimuth, and elevation selects a set of scattering
centers, each with a complex reflectivity voltage γi and posi-
tion vector ri relative to the target coordinate origin. The slant
range from the radar to scattering center i can be expressed
as

Ri = R0 + u(θ, φ) · ri (35)

where R0 is the slant range from the radar to the target
coordinate origin.

If there are Ns scattering centers, the transfer function for
the one-way radar channel between transmitter p and the target
is given by

Gp(f) =
Ns∑
i=1

γi exp
[
−j

2πf

c
(Ri)

]
, −FB

2
≤ f ≤ FB

2
,

(36)
where FB is the complex-baseband bandwidth of the radar
signal.

We extend the scattering center model into a bistatic model
as follows. Let the transfer function between transmitter p and
the target and the transfer function between the target and re-
ceiver q be represented by Gp(f) and Gq(f), respectively, with
the form given by (36). Then we let the transfer function for
the bistatic radar channel between transmitter p and receiver
q be

Gp,q(f) = Gp(f)Gq(f). (37)

Admittedly, this bistatic formulation is non-physical and goes
beyond the capabilities of the scattering center model, yet it
is the closest approximation to physical reality that we were
able to obtain.

The targets are considered at a fixed elevation angle and
360◦ of azimuth angles in two-degree increments. Thus the
SPRT must distinguish between three target classes, each with
180 aspect angles, for a total of 540 hypotheses. For each trial
of the experiment, a target class and aspect angle is chosen
randomly, and the SPRT is applied with α = 0.01 as discussed
in Section IV-A. This experiment is repeated for 1500 trials
over a range of signal energies Es in order to determine the av-
erage number of iterations required to reach the classification
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Fig. 1: Classification performance for deterministic targets

threshold in (29). The AWGN power is normalized to σ2 = 1.
The modeled MIMO radar system consists of three co-located
transmitter/receiver pairs illuminating a single target.

Figure 1 shows classification performance results for the
deterministic target experiments. In this figure, ‘MIMO wa-
terfilling’ refers to the waveform design method discussed
in Section III-C using the global energy constraint given
by (20). Similarly, ‘MIMO waterfilling with independent TX’
refers to the MIMO waterfilling waveform with the local, per-
transmitter constraint given by (26). The ‘Gaussian approxima-
tion’ data (so named because the target set is ‘approximated’ as
a Gaussian process) indicates the performance of a waveform
designed according to Section III-B, also with the global
constraint in (20). A ‘Non-adaptive,’ flat-spectrum waveform
(time-domain impulse) is compared to the three adaptive
techniques, and a SIMO case (P = 1, Q = 3) with equal
energy for the Gaussian approximation waveform is provided
as a final comparison.

From the figure, we can see that adaptive waveforms in
a MIMO radar system provide an appreciable performance
gain over both a non-adaptive impulse and over an adaptive
technique employed in a SIMO system. However, no clear
winner emerges from the three adaptive MIMO techniques.
Figure 2 shows the error rates among the five waveforms. We
find from [10] that the likelihood ratio test given by (29) only
constrains the error rate α between pairs of hypotheses, and
so the overall error rates can be higher than α, particularly
in cases with many hypotheses. Hence the error rates shown
in Figure 2 exceed α by large margins for all but the MIMO
Gaussian approximation waveform. Adjusted for error rate,
the MIMO Gaussian approximation waveform outperforms the
other adaptive methods.

B. Random targets

In these experiments, power spectral densities (PSDs)
Ψp,q(f) are chosen to have spectral peaks with various shapes
and varying overlap between 4 target hypotheses. For each trial
of the experiment, the correct target class is chosen randomly,
and its PSDs are used to color a Gaussian process to create
a realization of the random transfer functions corresponding
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Fig. 2: Error-rate performance for deterministic targets
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Fig. 3: Classification performance for random targets

to different paths through the MIMO system. The experiment
then proceeds as in the deterministic target case, except that the
SPRT described in Section IV-B governs the classification pro-
cess. Figure 3 shows the results for classification performance.
As was the case with the deterministic model, none of the
adaptive techniques stands out as superior based on iterations
for classification alone. Interestingly, the SIMO waveform
does not perform much worse than its MIMO counterpart for
our chosen set of PSDs. However, examination of Figure 4
reveals a similar trend as in the deterministic target case; the
Gaussian approximation waveform yields the best error rate
in a classification application with random targets.

VI. CONCLUSION

In this paper, we presented a MIMO waveform that max-
imizes the mutual information between a Gaussian random
target and the received echo data, and this waveform was ap-
plied to a classification scenario with a finite number of target
hypotheses and compared to an ad hoc waterfilling approach.
Classification performance was investigated under two target
models: a set of deterministic hypotheses from a scattering
center model, and a random target model defined by a set of
PSDs. While the new waveform does not classify targets in
fewer iterations than either of the two waterfilling approaches,
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Fig. 4: Error-rate performance for random targets

it achieves better error rates and therefore better classification
accuracy. We feel that this Gaussian approximation waveform
is a promising advance in the development of cognitive MIMO
radar systems.
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