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Abstract—In this paper, we introduce the concept of a Cog-
nitive Radar Network (CRN). The goal of the radar platforms
in a CRN is to cooperate in illuminating the radar channel in
an efficient manner in an effort to search for moving targets.
Moreover, when a detection is declared, the CRN should incor-
porate the tracking requirement into the illumination strategy.
That is, the beamsteering strategy must exploit the radar channel
uncertainty, which is a function of probabilistic representation
of the channel. The radar channel uncertainty is dynamic and as
such the CRN’s beamsteering strategy should be dynamic. Here,
we demonstrate a CRN by utilizing two static radar platforms
that form a dynamic integrated search-and-track beamsteering
strategy matched to the radar channel uncertainty.

Index Terms—Cognitive Radar, Cognitive Radar Network,
Search and Track, Matched Illumination, Adaptive Beamsteering

I. INTRODUCTION

Traditional radar systems form representations of the prop-
agation channel by measuring or estimating the amplitudes
(or energies) associated with resolution cells. As opposed to
a traditional system, cognitive radar (CR) depicts the radar
channel in a probabilistic manner [1-3]. As such, a smart
radar should exploit this probabilistic representation to search
a surveillance area for moving targets in an efficient manner,
i.e., an efficient use of the radar timeline and transmit power
via dynamic optimization of the beamsteering strategy. Clearly,
in search-and-track applications, both the search function and
tracking of detected targets are important priorities. Thus, a
CR should incorporate tracking function priorities into the
beamsteering strategy. In [4], a CR platform of this type
is introduced, where one platform is able to measure three
target parameters, search for targets, and maintain a three-
parameter track of detected targets. The three parameters are
two position parameters and radial velocity (via a Doppler
frequency). When a four-parameter track is desired, then both
velocity dimensions are considered. In this paper, it is our
interest to demonstrate efficient adaptive beamsteering and
platform cooperation between the radars in the network. The
objective of the network is to search for targets and establish
a four-parameter track of detected targets. Here, we propose
to form a cognitive radar network (CRN) with two static radar
platforms. The channel’s resolution cells are represented such
that each cell contains a probability of a target being absent or
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Fig. 1. Overall picture of a CRN for search-and-track application

present. This is called the probabilistic representation of the
radar channel. The two radars (each of which can only estimate
three parameters as mentioned above) will cooperate such that
a four-dimensional (4-D) probabilistic representation can be
formed. Moreover, the networked system will form an adaptive
beamsteering scheme such that the radar channel uncertainty
is reduced thereby yielding an efficient illumination strategy.

II. PROBABILISTIC REPRESENTATION AND UNCERTAINTY
OF THE RADAR CHANNEL

A. Probabilistic Representation of the Radar Channel

Fig. 1 shows the surveillance area of interest. For each cell
position (x, y), there are various velocity (vx, vy) possibilities.
In radar, target signals correspond to frequencies. Here, we will
use antenna and temporal measurements such that physical
parameters (x, vx, y, vy) map to radar-observable parameters
(kx, dx, ky, dy), where kx and ky are spatial frequencies and
dx and dy are Doppler frequencies. As such, we have a 4-D
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target parameter space in which each resolution cell contains a
probability of target present and/or absent. From the geometry
above, we note that Radar A is blind to the motion in the y
direction; thus resolution cells across dy are ambiguous with
respect to Radar A. Similarly, Radar B is blind to dx, and thus
the probability cells corresponding to this Doppler frequency
are ambiguous with respect to Radar B. Clearly, we need a
method to update the probability of target presence for all cells
due to measurements received from both Radar A and Radar B.
The probability updates are dependent on the target model as-
sumptions and the current received measurements, where each
radar forms a 3-D measurement cube. This difficult problem
is illustrated in Fig. 2. In [3], signal model considerations and
probability update methodologies were developed for a two-
parameter radar channel that can be extended to our present
4-D scenario. We refer the interested reader to [3].

III. QUANTIFYING RADAR CHANNEL UNCERTAINTY

We would like to quantify the radar channel uncertainty in
terms of the probabilistic representation. A natural measure of
uncertainty of a discrete random variable is entropy, which is
given by [5]

h =
∑
x

p(x)
1

ln p(x)
, (1)

and is clearly a function of the discrete random variable’s
probability mass function p(x). We can represent the target
presence or absence in a resolution cell as a binary random
variable; therefore the uncertainty via (1) is quantified by a
cell entropy given by

hc = −p log2 p− (1 − p) log2(1 − p), (2)

where p is the probability that a target is in that cell. Fig. 3
shows the cell entropy as a function of the probability that

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Cell Probability

C
e

ll 
E

n
tr

o
p

y

Cell Entropy as function of Target Probability

Fig. 3. Overall picture of a CRN for search-and-track application

a target is present (which is exactly the entropy of a binary
random variable). Notice that a probability of 0.5 corresponds
to the highest cell entropy value of 1, i.e., 0.5 probability value
corresponds to maximum uncertainty. In terms of our forming
a beamsteering strategy, areas of high entropies are candidates
for immediate illumination.

Now, we can calculate each cell’s entropy based on the cur-
rent probability map. Since we have a 4-D probability map, we
have a 4-D entropy map. We propose to use the 4-D entropy
map to optimize beam placement for the next illumination, but
the illumination is a 2-D function of (kx, ky). To overcome this
issue, we collapse the 4-D entropy map into a 2-D hc(kx, ky)
map by averaging over the Doppler frequencies. Let the area il-
luminated by the main beamwidth contain C spatial resolution
cells. We can calculate the cumulative entropy of any beam
position, called beam position entropy (BPE) hP , by summing
up the individual cell entropies. The BPE is a function of beam
position that quantifies the relative importance of interrogating
different areas of the scene, at least with respect to the search
function. After an illumination of a specific beam position, the
target probabilities for all illuminated resolution cells within
that particular beam position are updated; thereby producing
an updated 4-D entropy map. As stated earlier, a collapsed
2-D entropy map is formed, from which the current BPE map
is easily calculated.

IV. DYNAMIC PROBABILITY MODEL AND KALMAN
TRACKING

A. Dynamic Probability Model

Fig. 4 represents the physical surface under surveillance
by the CRN. While a beam position is being illuminated by
the main beam, targets may appear in un-illuminated beam
positions such that the cell probabilities in those areas should
be dynamic. In other words, the uncertainty of a target being
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present (or absent) in an un-illuminated cell should adjust to a
value that is reflective of some steady-state probability of the
cell. We define the steady-state probability of a cell as that
probability that is approached in time when a cell is not being
updated or illuminated. Here, the probability increase/decrease
toward a steady-state probability is implemented as a dynamic
model.

In this paper, we will assume all cells to have the same
steady-state probabilities. However, in our scenario, we assume
that targets are more likely to enter the scene through the
boundaries of the scene rather than starting up in the interior
of the scene. Referring to Fig. 5, the concentric circles indicate
that the outside probabilities converge more rapidly to their
steady-state probabilities, which reflects the fact that the scene
is more dynamic near its boundaries. That is, when the cells are
not being illuminated, the probability rate of increase/decrease
of an outside cell is greater than that of an inside cell.

B. Tracking with Kalman Filter

In addition to searching a scene for new targets, we also
desire to track targets that have been detected. For simplicity,
in this paper, we utilize the Kalman tracker. In Kalman theory,
the state vector is modeled as a Gaussian vector and the
tightness of the state vector is given by K, the state covariance
matrix (SCM). The uncertainty is quantified by the entropy

ht = 0.5 ln(2πe)F det(K), (3)

where F is the length of the state vector. Clearly, F = 4 since
we are interested in a four-parameter track. We refer to (3)
as tracked target entropy (TTE). Note that TTE is a linear
function of the determinant of the SCM K. The TTE plays an
important role in the formation of a search-and-track strategy
(as we shall see in the next section). For M detected targets,
there are M different TTEs, each quantifying the uncertainty
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Fig. 5. In this probability change model, large concentric circles indicate
higher rates of convergence towards steady-state values

of a particular track. The search-area entropy map (the BPE
map) and the track entropies (TTEs) combine to quantify the
overall radar channel uncertainty.

V. ADAPTIVE SEARCH-AND-TRACK BEAMSTEERING
STRATEGY

Ignoring the track function and concentrating on the search
function for the moment, we recognize the way to minimize
the post-measurement search-area entropy is to place the beam
to the position of highest BPE. This what we call the adaptive
search-only beamsteering strategy.

We can incorporate tracking metrics into the beamsteer-
ing strategy by a having a desired track entropy threshold,
ht,desired. Once a target is detected, we monitor its TTE.
We can integrate track schedule into our adaptive search-only
beamsteering strategy in a couple of ways. In the first method,
once the threshold ht,desired is exceeded, we can interrupt
the search-only beamsteering strategy and place the beam on
to the target. However, a better method is to compare track
uncertainties with search uncertainties, i.e., compare BPEs
with TTEs. Hence, a more dynamic method of beam position
selection is formulated. To accomplish the comparison, we
introduce a scalar Ω such that the two entropies of different
types (BPE and TTE) can be compared. For convenience,
consider a single detected target. Then the adaptive search-
and-track beamsteering strategy rule is then given by

if ht >
hP,max

Ω
then illuminate target (4)

else illuminate area with max BPE,

where hP,max is the maximum BPE over all possible beam
positions. The scalar Ω is, therefore, a dial that allows to
trade/compromise between search and track priorities.
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Fig. 6. Beam accumulation histories for different values of Ω. Top panel:
Ω = 0. Middle panel: Ω = 1e20. Bottom panel: Ω = 5e20

VI. SIMULATION RESULTS

Our goal in this experiment is to use the adaptive search-
and-track beamsteering strategy in a search-and-track applica-
tion. We consider a 4-D scenario with 60-by-60 spatial cells
and 15-by-15 velocity cells per spatial cell. Thus, the overall
target parameter space is 60-by-60-by-15-by-15. We consider
three experiments with varying track priority requirements
given by: a) Ω = 0 represents no track priority requirement,

b) Ω = 1e20 represents a slight track priority increase, and
c) Ω =5e20 being the highest track priority requirement of
the three. In each experiment, the target initiates motion from
the northwest corner to the southeast corner of the scene.
Here we will show the results of the experiments in terms of
beam accumulation history comparison. Beam accumulation
history is simply a graph/metric that shows the number of
illuminations spent on each cell of the surveillance area in the
course of an experiment. Also, we will show results in terms
of track quality comparison as the track priority is increased
using the integrated search-and-track beamsteering scheme.

A. Beam Accumulation History Comparison

The beam accumulation histories for the three experiments
are shown Fig. 6. The sub-figures correspond to increasing
level of track function priorities: Ω = 0, Ω = 1e20, and
Ω =5e20. An experiment was generated where a target moved
from the left upper corner to the right lower corner. Each
radar (alternately) illuminated, collected measurements, and
updated the 4-D probability ensemble from the moment the
target appeared until it left the scene using the adaptive
search-and-track beamsteering strategy. In each case, the target
was detected and tracked. The beam accumulation history
corresponding to Ω =0 (top panel) reflects the CRN’s at-
tempt to match the search-area uncertainty with no regard
to the target track. The higher density around the perimeter
reflects our dynamic model that implements a bias toward
new targets appearing at edges of the search scene. The
beam accumulation history corresponding to Ω =1e20 in
Fig. 6 (middle panel) reflects the CRN’s attempt to put some
emphasis on the target track. Notice the slight change in beam
accumulation densities from Ω =0 to Ω =1e20. There is an
increase in the accumulation density in the southeast corner
of the scene, where the target was detected and tracked. The
bottom panel corresponds to the beam accumulation history
employing Ω =5e20. Here, the pronounced streak near the
southeast corner of the scene clearly indicates that target was
detected and tracked between the origin and the southeast
corner of the scene and that the track priority emphasis is
significant.

B. Track Quality Comparison

We now show the corresponding track position estimates
after target detection for the above experiment, where Ω = 0,
Ω = 1e20, and Ω = 5e20 correspond to the same experiments
above. Fig. 7 shows the positional tracks for the three sample
experiments. The left panel shows tracks for the kx position
and the right panel shows tracks for the ky position. The target
was detected between the origin and the southeast corner of the
scene. From the moment of establishing track for this target,
there were about 750 time steps (illumination histories) until
the target left the scene. Notice the tightness of the track as Ω
is increased. The tightness of the track corresponding to Ω =
5e20 is the best (among the three cases) which corresponds
to the fact that the illumination update rate for this Ω is the
highest.
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Fig. 7. Positional tracks (kx, ky) for Scenario Size B (60-by-15-by-60-by-
15) for different values of Ω. Top panel: Ω = 0. Middle panel: Ω = 1e20.
Bottom panel: Ω = 5e20

VII. SUMMARY

In this paper, we introduced the new concept of Cogni-
tive Radar Network (CRN), where the radar platforms in
the network cooperate in searching a multidimensional radar
channel by exploiting the surveillance area uncertainty. In
this paper, the network was composed to two static radar
platforms. The channel was represented probabilistically. The
appearance of targets and convergence to steady-state prob-
abilities may depend on the actual physical features of the
scene. As such a dynamic probability model was introduced.
The 4-D probabilistic representation was transformed into
search-area entropy map via the beam position entropy (BPE)
map. The adaptive search-only beamsteering strategy rule is
simply to place the beam to the position with maximum BPE.
Track priorities were incorporated by calculating target tracked
entropies (TTE). A dynamic illumination scheme (called
adaptive search-and-track beamsteering strategy) was formed
by introducing a scalar Ω that allowed comparison of two
different entropy types. We presented a series of experiments
involving the detection and tracking of a moving target. The

experiments corresponded to increasing track priorities. We
compared the corresponding beam illumination histories and
showed how track priorities and search priorities were accom-
modated simultaneously. We also showed the corresponding
positional tracks for increasing values of Ω. As expected, the
tightness of the track improved as the Ω value was increased.
This is because the higher Ω value corresponded to higher
track priority. The higher track priority resulted in a higher
illumination update rate, which resulted in a tighter track.
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