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Abstract— Compressed sensing and sparse reconstruction 
techniques have been applied to radar signal acquisition, 
reconst ruction of the range-Doppler map, and radar imaging. 
Most prior work in this area focuses on imaging and 
reconst ruction while little attention has been paid to the effects 
of these techniques on detection performance. In this paper , we 
study the detection performance of signals acquired in an 
undersampled manner via random projections. We compare 
detection performance for signals acquired via traditional 
sampling of the matched filter , for correlation detection that 
operates directly on compressed measurements, and for the 
matched filter applied to the signal reconstructed via basis 
pursuit denoising. 

I. INTRODUCTION 
In order to overcome the reduction in signal strength due 

to propagation loss and small target radar cross section (RCS), 
and also to accurately measure the target’s delay and Doppler 
shift, radars often use frequency- or phase-modulated pulses to 
achieve high time-bandwidth products. Acquisition of such 
signals is usually done with matched filtering and analog-to-
digital (A/D) conversion at the bandwidth of the signal, which 
can require costly high-rate A/D converters (ADC) or a 
compromise between A/D sampling rate and number of bits 
(stretch processing of linear frequency modulated (LFM) 
signals is an exception – the sample rate can be kept low, but 
the pulsewidth must be long compared to the range swath). On 
the other hand, compressed sensing (CS) [1] techniques can be 
used to acquire signals at a sample rate that is below the 
standard Nyquist rate, potentially relieving the hardware 
burden and replacing it with intelligent signal processing and 
algorithm design.  

Because data acquired via CS methods are undersampled 
with respect to the Nyquist rate, signal reconstruction is ill-
conditioned and some form of regularization must be applied 
when reconstructing the full signal. In compressed sensing, 
this regularization takes the form of a sparsity constraint, 
which means that the signal can be represented by some set of 
basis signals with only a few non-zero basis coefficients. For 
example, it may be known that a signal is sparse in the 

frequency domain, meaning that the signal always consists of 
only a few frequency components. While the exact 
frequencies and their amplitudes may be unknown, the full 
signal can still be reconstructed under certain requirements on 
a) how many measurements are taken; and b) the structure of 
those measurements. The requirement on the structure of CS 
measurements is that the measurement kernels must be 
incoherent [2] with the sparse representation basis. It is now 
well known that random measurement kernels meet this 
incoherence requirement with high probability [3], and 
measurements taken with random kernels are generally called 
random projections.  

Thus, while certain signals can be reconstructed despite 
being measured in an undersampled manner, the method of 
collecting these samples cannot be just a typical receiver 
operating at a lower rate. For example, if we were to simply 
undersample the output of the radar matched filter, it is likely 
that any peak resulting from the correlation of the matched 
filter with a reflected signal would be missed altogether. 
Furthermore, samples of the resulting range sidelobes would 
be insufficient, especially in the presence of noise, to 
determine the presence and/or range of the target. Instead, the 
receiver must be re-designed such that the time interval 
contributing to a particular sample actually spans multiple 
resolution cells. This measurement technique, which has a 
non-local kernel in the time domain, ensures that no matter the 
delay of the target, at least a few adjacent samples capture 
some of the signal’s energy.  

To begin thinking about taking radar measurements in a 
new way, consider first a function r(t) that represents the 
signal to be captured. We can consider any measurement taken 
by the radar to be in the form 

    x r t k t dt    

where k(t) is the measurement kernel. For example, a sample 
of this signal obtained at time t =  by a conventional ADC 
occurs when the measurement kernel k(t) = (t - ) where (t) 
is the Dirac delta function. A radar receiver that samples after 
an analog implementation of a matched filter captures the 
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measurement 

    x r t p t dt    

where p(t) is the transmitted pulse. In other words, the radar 
receiver correlates the received waveform with a replica of the 
transmitted pulse. A full array of fast-time measurements is 
then obtained by correlating the received waveform against 
many replicas of the transmitted pulse at different delays, i.e., 

        m m mx r t k t dt r t p t dt    . 

Of course, this array of correlations is usually implemented as 
a matched filter followed by an ADC operating at the 
waveform bandwidth.  

If we desire to reduce the rate of the ADC, then the 
measurement kernels can no longer be matched to the 
transmitted pulse. At the output of the matched filter, the pulse 
is compressed such that it’s time support is approximately the 
reciprocal of the pulse bandwidth. Because the filter output is 
now localized in time, we cannot sample it with a 
conventional ADC (which takes temporally localized samples) 
unless we intend to sample every possible delay. In CS 
terminology, we cannot undersample because the 
measurement kernel is not incoherent [3] with the basis in 
which the signal can be sparsely represented – in fact, a 
matched filter implements fully coherent measurements. To 
undersample, we must instead find a new receiver architecture 
that implements measurements that are incoherent with the 
radar pulse. 

The random demodulator [5] and the modulated wideband 
converter [6] implement random measurement kernels, which 
are known to form an incoherent measurement basis. The 
random demodulator, shown in Fig. 1, multiplies the analog 
waveform with a pseudo-random binary sequence. The 
resulting product is then integrated over a time interval equal 
to the sample period, and the result of the integration is stored 
to produce a measurement.  

In this paper, we demonstrate the ability to reconstruct high-
SNR signals acquired via a generalized version of the 
structure in Fig. 1. (We use various random signals for the 
measurement kernel, allow the integration time to be longer 
than the sample period, and the integration is approximated 
with a lowpass filter.)  However, the ultimate objective of a 
radar system is to detect and locate targets. Although signals 
can be reconstructed in certain circumstances, the 
reconstruction methods are iterative and non-linear, and it is 
not clear how they will affect the detection statistics. 
Furthermore, signals acquired via undersampled methods do 
not achieve the full SNR gain provided by the matched filter, 
so we expect at least some detection loss that varies with the 
amount of compression. In this paper, we begin to study the 
detection performance of signals acquired via compressed 
sensing techniques. We show histograms of detection statistics 
in both the target-absent and target-present cases. We also 
compare detection performance when operating directly on the 
compressed measurements to performance of the matched 
filter applied to a signal reconstructed via basis pursuit 
denoising (BPDN) [7]. 

 
Figure 1. Block diagram of random demodulator . 

In Section II, we briefly describe the signal model being 
used and how knowledge of the radar pulse can be used to 
form a sparse basis. In Section III, we present an example of a 
signal reconstructed via BPDN, and in Section IV, we show 
various detection performance analyses. We make our 
conclusions in Section V. 

II. SIGNAL MODEL AND RANDOM DEMODULATION 

A. Signal Model 
We consider a simple single-pulse model. Let the complex 

baseband radar waveform be denoted by p(t). If a point target 
with reflection coefficient  is present at delay , then the 
(baseband equivalent) reflected signal that arrives at the 
receiving antenna will be p(t - ). For multiple targets, we 
can express the received signal at the antenna as 

    
1

tN

i i
i

r t p t 


   (1) 

where Nt is the number of targets. The receiving antenna, low-
noise amplifier, transmission lines, and other components all 
add noise to the signal. We model this noise as complex 
additive white Gaussian noise (AWGN) n(t) (see Fig. 1). 
Thus, the noise-corrupted signal that enters the sampling 
structure of the receiver is 

      
1

tN

i i
i

z t p t n t 


   . (2) 

For typical radar waveforms that use some form of phase 
or frequency modulation, the noise-free signal in (1) spans 
both a broad time interval (the pulse width) and a reasonably 
wide bandwidth. Thus, prior to compression the signal is not 
sparse in either the time or the frequency domain, but instead 
is sparse in the pulse basis. That is, assuming that the number 
of targets is small, (1) clearly shows that the received signal 
can be represented as a linear combination of just a few 
scaled and time-shifted radar pulses. Hence, a sparse 
representation basis is the set of pulse waveforms spanning 
the set of possible target delays. 

B. CS Fundamentals 
Compressed sensing deals with signals that are sparse. If a 

basis exists in which the vector representation of the signal 
contains mostly zeros, then with respect to some coherency 
conditions, a series of projections can be designed so that the 
vector is mapped into a new, more compact representation and 
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is completely recoverable.  Let a vector representation of some 
signal be 

 i i
i

 r p Pα , (3) 

where p i denotes a column vector of the matrix P and i is an 
element of the length-N vector . For 1p  , if ||p is small 
relative to N then a suitable sensing matrix K  can be designed 
to form a more compact representation of . In this paper, P is 
a basis of continuous-time, square-integrable pulses p(t - i), 
represented by their discrete samples pi[n] = p(nTs - i), where 
Ts satisfies the Nyquist criterion for the pulse bandwidth.  

A measurement operator can be designed that performs the 
necessary projections. Denote the measurement operator as K , 
then 

A KP    (4) 

where A  is equivalent to the sparse basis projected into the 
measurement space. The measurement operator K will act 
upon r to form the length-M measurement vector x, 

 x K r . (5) 

Let V = ||. As long as K  and P obey the Restricted Isometry 
Property (RIP) [3], (that is, the rows of K  cannot be 
represented sparsely with the columns of P and vice-versa) 
and M is on the order of  log( )V N V , then r can be recovered 
from x.  The recovery process involves some form of 
regularization in conjunction with a linear matrix solver 
(either Basis Pursuit or some kind of Gradient Method) [1-4]. 

C . Random Demodulator 
The random demodulator multiplies the input signal by a 

pseudo-random sequence, and then integrates to produce a 
measurement sample. The combination of multiplying by a 
pseudo-random sequence and then integrating is equivalent to 
performing an inner product between the signal and pseudo-
random sequence over a particular time interval. Letting the 
integration period be Tint and the time between samples be Ts, 
the mth measurement is 

      
int

s

s

mT

m s
mT T

x x mT z t k t dt


    (6) 

where k(t) is the pseudo-random measurement kernel. Note 
that if Ts > 1/2B where B is the radar pulse (baseband) 
bandwidth, then the received signal is undersampled. 
Moreover, we could allow Tint > Ts, which would cause 
adjacent projections to overlap. Stacking the samples into a 
measurement vector produces the vector x = [x1 x2 … xM]. Our 
analysis involves performing correlation-based detection 
directly on the compressed measurement vector x and also on 
the Nyquist signal representation reconstructed via BPDN. 

III. RECONSTRUCTION EXAMPLE 
Consider an LFM pulse with pulsewidth equal to 0.2 s 

and (bandpass) bandwidth of 200 MHz for a time-bandwidth 
product of 40 [8]. Figure 2 shows a reconstructed pulse with a  
 

 
Figure 2. L F M waveform reconstruction example. 

 
Figure 3. L F M waveform compression example (output of the 

random demodulator – the samples form the measurement vector x). 

delay of 0.375 s. The SNR, defined here as the ratio of 
squared pulse amplitude to E[|n(t)|2], in Fig. 2 is 20 dB. The 
undersampling factor/measurement compression ratio is 6. 
Thus, instead of sampling at a rate of 200 MHz, the receiver 
sampling rate is 33.3 MHz. The integration time per sample is 
four times longer than the sampling interval, or 0.12 s. Fig. 2 
shows (the real part of) the noisy waveform, the noise-free 
waveform, and the waveform reconstructed from the 
compressed measurements using BPDN. The compressed 
measurements themselves are shown in Fig. 3. Parameters of 
the sparse reconstruction have not been optimized here, yet the 
reconstructed signal is quite good and seems to have much of 
the noise removed. The waveform reconstruction shown in 
Fig. 2 demonstrates the potential for acquiring radar signals at 
rates lower than the waveform bandwidth.  

If the reconstructed signal were passed through the filter 
matched to the LFM waveform, it appears that the resulting 
output would have a peak in the proper location corresponding 
to  the  target  range. However,  it’s obviously more difficult  to 
obtain a good signal reconstruction in low-SNR environments 
where radars must operate in order to maximize detection 
range. In low-SNR scenarios, the signal is often weaker than 
the receiver noise and cannot be seen or detected until after the 
SNR gain is realized by compressing the radar pulse. An 
important question, therefore, is whether sparse reconstruction 
methods can perform well enough in low-SNR scenarios to 
realize pulse compression gain. Moreover, since sparse 
reconstruction methods are non-linear, it is not clear what the 
distribution of the detection statistics will be, or even if they 
can be predicted at all. In the next section, we show sample 
results that begin to explore the behavior of CS and sparse 
reconstruction with respect to detection performance in 
realistic environments. 
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Figure 4. Projection/measurement kernel (K). 

IV. DETECTION PERFORMANCE ANALYSIS 
In this section, we begin exploring the detection 

performance of a radar system based on fast-time compressive 
sampling via random projections. The projections in (6) can be 
expressed in matrix form via a matrix projection kernel K . For 
convenience, we simulate the received signal in discrete-time 
form where the initial representation is at or above the Nyquist 
rate  (to  model  the  “analog”  signal  in  our  simulations,  we 
sampled at 10x the Nyquist rate). The projection kernel K  is 
made up of zero-mean Gaussian distributed samples passed 
through a low-pass FIR filter matched to the bandwidth of 
signal of interest r(t).  Each row of the measurement matrix is 
then a repeat of this random kernel, with all but the time-
shifted interval of integration for that measurement set to zero.  

Fig. 4 depicts the structure of the measurement matrix. Let 
the vector of discrete-time values prior to compression be z. 
The compressed measurements can then be defined as  
x = K z. Each row of K  implements a projection onto a 
different time interval of the received signal. If the projections 
overlap, then some of the entries will be repeated in successive 
rows. Breaking z into signal and noise components, we have x 
= K (r + n) = K r + K n. 

Now consider detection of r in the case where r is known 
(for example, detection of a target at a specific range) except 
for its amplitude and phase. We wish to compare detection 
performance for three different approaches. First, our baseline 
approach is to perform optimum detection of r directly on the 
uncompressed data z. For a signal that is known except for 
phase embedded in AWGN, the optimum detector is the 
magnitude of the matched filter or correlation output; 
therefore, the detection statistic is 

 H  r z . (7) 

where ()H denotes the conjugate transpose operation. 
Performance of this detector is well known [9]. 

For the second approach, we consider detection of the 
signal from the compressed measurements. After compression, 
the desired signal has the distorted form rc = K r, and in 
 

 

F igure 5. Representation basis matrix P for sparse vector . 

 

addition, the noise is no longer white. The covariance of the 
noise is now C  = Pn K K H where Pn is the noise power before 
compression. The optimum detector for this case is 

     HH 11 H
c c

 C r x K K r x . (8) 

The C-1 term acts as a pre-whitening filter, de-correlating the 
noise in x. 

Finally, for the third approach, we first perform the sparse 
reconstruction of the original signal. Let P represent the pulse 
basis of the received noise-free waveform. This is made up of 
uniformly spaced, time-delayed versions of the LFM 
waveform presented in Fig. 2. The image of the basis matrix 
in Fig. 5 shows the delay for each pulse in P.  We then define 
a vector of possible reflection coefficients .  
This allows us to use BPDN [10] to find the reconstruction ẑ  
of the signal z. The algorithm solves for  according to 

 
1

ˆ arg minα α  subject to 
2

 Aα x  (9) 

where the regularization condition is the l1 norm of (the 
requirement that is sparse) The MxN matrix A  is equal to 
K P. Once α̂ is found, ẑ  can be formed from a simple matrix-
vector multiply onto the pulse basis ( ẑ = P α̂ Since noise is 
white before compression, the noise formed from the direction 
of the largest gain in the measurement matrix will dominate in 
the post-compression noise covariance matrix C. The noise 
power in this direction is equivalent to the largest eigenvalue 
of C ; therefore, for  we use the square root of the largest 
eigenvalue of C. 

The processing that produces ẑ  is non-linear, so it is 
difficult to know the distribution of the noise contained in ẑ ; 
in fact, there is no separable noise component like there is in 
(2). Thus, without further information at this point, we attempt 
to apply the correlation detector directly to the reconstructed 
signal to produce the detection statistic. 

 H ˆ  r z . (10) 
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Figure 6. Matched F ilter Results. 

Fig. 6 shows each statistic at the output of the matched 
filter for the waveform shown in Fig. 2. The 16-dB pulse 
compression gain (equivalent to a time-bandwidth product of 
40) added to the 20-dB input SNR is quite clear in the 1st 
graph.  This gives a total gain of 36 dB over the noise floor.  
The second graph shows the result of passing the compressed 
measurements through a filter matched to rc = K r. The 
compression was set to 4:1 relative to Nyquist, and the 
resulting 12-dB loss relative to the uncompressed signal 
output is evident in the peak.  Also the range sidelobe 
structure has become uniform across the time-of-arrival of the 
signal.  The reconstructed waveform (the third graph) is quite 
interesting as it shows complete signal recovery in the 
matched filter, seemingly outperforming compression alone. 
However, the price paid for recovering the output signal peak 
seems to be a non-stationarity in the noise power over 
different time delays. 

Fig. 7 shows performance curves for the three detection 
approaches applied to a single detection scenario. The target 
was placed at a delay of 0.375 s (same as in Fig. 2), and the 
SNR was set to -10 dB (6 dB at the output of the matched 
filter) in order to provide small overlap between the two 
distributions of the test statistic in the uncompressed data case 
(thus, the signal strength in this scenario is right on the 
boundary for reasonable detection performance).  The sample 
vector x has length M = 36, and the sparse vector is length  
N = 943. The length of  comes from the number of basis 
vectors needed to represent a signal over a 0.swindow of 
time delays.  In the noiseless case, the number of required 
measurements is on the order of 7 (one non-zero element in 
out of 943 for log(N = 943) ~ 7) [11]. We use M = 36 
samples, which provides 4x undersampling relative to the 
Nyquist rate. 

We see the strong performance degradation that results 
from compressed acquisition of the waveform. Fig. 8 shows 
the histogram of the noise-only detection statistic and the 
 

 
Figure 7. ROC’s for compressed & uncompressed data. 

 
Figure 8. H istograms for compressed & uncompressed data. 

histogram of the signal-plus-noise detection statistic for each 
detection technique. The loss in performance of the 
compressed detector is due to the loss in SNR from a 
reduction in samples, on the order of the undersample rate.  

The loss in performance of the reconstructed detection is 
less straightforward. Certainly, some degradation is expected 
since compression does not follow the matched filter, and the 
SNR loss that occurs due to compression cannot be undone, 
but still the performance degradation is surprising. Figure 8 
implies that the reconstructed signal has very little signal 
component. The nature of the random measurement basis is 
good for incoherency because no matter where in space the 
sparse signal exists, at least a small portion of it will be 
mapped into the compact sensing space. However, because 
white noise is spherical, random kernels map a large amount 
of noise power onto the compact sensing space, but without 
the corresponding gain in signal power provided by matched 
filtering. Thus, there is a tradeoff between SNR and sampling 
rate when implementing compressive sensing via random 
projections in the RF domain.  
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V. CONCLUSIONS 
We have presented several results concerning the detection 

of radar signals acquired via a compressive receiver 
employing random measurement kernels. In the high-SNR 
regime, signal reconstruction may be possible such that radar 
imaging or other functions can be performed. In the low-SNR 
regime, radar detection performance will depend greatly on 
the structure of the radar waveform as well as the design of the 
measurement basis. In future research we will investigate the 
potential for optimizing measurement kernels to perform 
detection at a given compression ratio with minimal 
performance loss compared to full-rate sampling. 
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