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Abstract—Stretch processing is often used by radar systems to
capture LFM waveforms. Although stretch processing reduces
sampling rate, it does so at the expense of increased data
collection period. Therefore, the time-bandwidth product of the
de-chirped waveform is approximately constant, and stretch
processing cannot be considered a compressive technique.

The sample rate of a stretch processor must match the
bandwidth of the beat frequencies created in the de-chirp process.
Uniform sampling at lower rates will cause range ambiguities
without an anti-aliasing filter, but an anti-aliasing filter removes
part of the range swath. We propose a hopping de-chirp signal
(sensing matrix) that shifts regions of the range swath in and out
of the anti-aliasing filter’s bandwidth. This hopping produces
a unique time profile of beat frequencies for each range in
the swath and enables compressive sampling without sacrificing
range swath or resolution and without introducing ambiguities.
After describing the hopping de-chirp technique, we analyze
multichannel implementations where it is possible to use a
different hopping sequence on each channel.

I. INTRODUCTION

In traditional radar, linear frequency modulated (LFM)
waveforms are often captured with a de-chirp procedure called
stretch processing [1]. Stretch processing allows the rate of
the analog-to-digital converter (ADC) to be reduced, at the
expense of increased data collection time. Because the time-
bandwidth product of the received signal is the product of the
data collection interval with the Nyquist sampling rate, the
trade-off provided by stretch processing cannot be considered
a compressive sampling implementation. Indeed, in order to
realize a reduced sampling rate via stretch processing, the
radar pulse width must be longer than the propagation time
across the desired range swath, so the total number of data
samples remains approximately the same.

In this paper, we consider the de-chirp process as part of
the sensing matrix formulation for compressive sensing (CS),
but modify the de-chirp reference signal in a way that enables
compressive sampling [2]. Typically, the sample rate must be
matched to the bandwidth of beat frequencies produced by
the de-chirp process. If the de-chirped signal is sampled at
a lower rate, part of the range swath must either be filtered
out by an anti-aliasing filter or range ambiguities will be
produced. To avoid this, we propose a hopping de-chirp signal
that sequentially shifts different regions of the range swath in
and out of the anti-aliasing filter’s bandwidth (i.e., the de-chirp

signal’s reference range changes with time). This approach
produces a unique time profile of beat frequencies for every
range in the desired swath, thus enabling compressive sam-
pling with the possibility of incorporating prior knowledge,
without sacrificing range swath, degrading range resolution,
or introducing ambiguities. After describing the hopping de-
chirp receiver, we consider a multichannel version where each
channel can potentially have a different hopping sequence.

In Section II we introduce the compressively sampled
stretch processing receiver and show through the use of a
hopping de-chirp reference signal that we can compressively
sample a LFM pulse. We examine the effects of random
hopping and discuss an approach for maximizing the expected
energy from the target return through prior knowledge of the
target’s range distribution. We extend the receiver architecture
to a multichannel system and show range/angle ambiguity
functions for the random compressive sampling architecture.
In Section III we show expected SNR results from the
maximization process described in Section II. We make our
conclusions in Section IV.

II. COMPRESSIVELY SAMPLED STRETCH PROCESSING
RECEIVER

The modulated pulse is a common radar signal that provides
high bandwidth in a long pulse with plenty of energy for
detection. One popular type of modulation is linear frequency
modulation (LFM)

x(t) = rect
(
t− 0.5Tp

Tp

)
ej(2πF0t+πγt

2),

so called because the instantaneous frequency (F0 + γt)
changes linearly with time. The slope, γ called the chirp rate,
is given by γ = B

Tp
where B is the pulse bandwidth and Tp

is the pulsewidth.

A. Stretch Processing

The received pulse is shifted by a time τ proportional to
target range, so that the signal becomes

r(t; τ) = αrect
(
t− 0.5Tp − τ

Tp

)
ejπγ(t−τ)

2

e−j2πF0τ . (1)

The required ADC sample rate can be reduced by ”de-
chirping” the signal prior to sampling. This is done by
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multiplying the received signal by the conjugate of a reference
signal. The reference signal x0(t) is offset by τ0, the center
delay of the range swath under interrogation

x0(t) = ejπγ(t−τ0)
2

.

Multiplying the received signal by the conjugate reference
(x∗0(t)r(t; τ) ∝ ej2πγ(τ0−τ)t) produces a beat frequency
(γ(τ0 − τ) ) that is proportional to range, relative to the ref-
erence [1]. The resulting bandwidth (called the IF bandwidth)
generated by all ranges in the swath after de-chirp is

BIF = γTs = B(Ts/Tp) (2)

where Ts = τmax − τmin is time width of the range swath.

B. Compressive Sampling

Equation (2) shows that as long as Ts is smaller than the
pulsewidth, the Nyquist sample bandwidth (BIF ) will be less
than the bandwidth of the transmit pulse. If we wish to sample
at a lower rate or interrogate a larger swath but keep the same
sample rate, we must find a way to modulate the highest beat
frequencies into the sample bandwidth. This can be done by
”hopping” the reference signal. The beat frequencies of the
de-chirped signal will hop with the reference so that different
ranges will have unique hopping patterns, thus eliminating
range aliasing while ensuring at least part of the return pulse
will shift into the sample bandwidth for any given range. The
price paid for this reduced-rate implementation is that not all
ranges can be shifted within the sample bandwidth at all times;
therefore, some energy will be lost when the IF signal passes
through the anti-aliasing filter prior to sampling.

Let a hopping de-chirp reference signal be given by

x0(t) = ejπγ(t+β(t)−τ0)
2

where β(t) represents a piecewise hop function that is constant
for the time interval tn−1 ≤ t < tn. At the end of each time
interval, β(t) hops to a new constant value. The tn’s form a set
of disjoint time intervals that cover the full sampling period
of duration (Ts + Tp). The set of βn = β(tn) can either be
randomly generated or deterministically designed in order to
capture some attribute of the received signal.

In (1) we model the received signal as a finite-energy,
bandlimited continuous-time pulse, parameterized by time-of-
arrival τ and amplitude α so that r(t; τ) = αx(t−τ). In order
to quantify the average SNR loss incurred by our compressive
implementation (Note that all compressive RF receivers will
incur SNR loss), let τ be a random variable with pdf pτ (τ).
The received signal αx(t − τ) is now a random process and
the output of the de-chirping process and anti-aliasing filter is

y(t; τ) = h(t) ∗ (x∗0(t) · αx(t− τ)) . (3)

where h(t) represents an ideal low pass filter with cutoff
frequency matched to half the ADC rate. Defining Es = |α|2,
the expected energy in the received signal is

Ēs = E(τ)

[∫ τ+Tp

τ

|y(t; τ)|2 dt

]
. (4)

In other words, the expected signal energy for a given hopping
sequence is calculated by computing the energy retained by
the hopping sequence for a given range, and then average over
the pdf of the target range. Define the time-bandwidth product
(TBWP) of the received signal over Ts as K = bTsBc. Divide
the range swath into a bank of K range bins defined by τi =
iTs

K + τmin for i = 0, . . . ,K− 1. The probability that a target
falls in a particular range bin is pi =

∫ τi+1

τi
pτ (τ)dτ . Likewise,

define the TBWP of the radar pulse as P = bTpBc and divide
the received signal into m = 0, . . . , P −1 hop intervals. Here,
the de-chirp waveform stays at a particular hop for an interval
of Tp

P . A shorter hop interval risks unintentionally modulating
the signal such that it is no longer identifiable as hopping
LFM. Equation (4) becomes

Ēs = Es

K−1∑
i=0

pi

P−1∑
m=0

∫ τi+
(m+1)Tp

P

τi+
mTp
P

|h(t)∗ej2πγ(βm+i+τ0−τi)t|2 dt.

Using Parseval’s Theorem [3], the expression can be written
in the frequency domain, but because the time integration
has been approximated with discrete intervals, we can only
express it as an inequality. By swapping the integration with
a summation and substituting n for m + i and summing the
intervals over Tp+Ts, we can integrate over frequency in each
interval independently. Define Q = min(K,P ) as the number
range bins present in any one time interval, then

Ēs ≤ Es
γTp
P

P+K−1∑
n=0

∫ ∞
−∞

Q−1∑
i=0

pn−i H(f)Xn,i(f)df, (5)

where Xn,i(f) = δ (f − γ(βn + τ0 − τn−i)) and δ(f) is the
Dirac delta function over frequency.

Figures 1 and 2 show the process of de-chirping a signal
using a uniform randomly hopping de-chirp reference. The
left panel shows instantaneous frequency versus time for the
hopping de-chirp reference and the reflected signal while the
right panels shows the de-chirped beat frequency versus time.
As seen in Figure 1, for uniformly random hopping γβn,
and Ts > Tp the reference range for any hop should be
within the range swath. After de-chirp, the beat frequencies
for any range will be uniformly distributed over B. The de-
chirp operation acts as an addition in frequency of two random
variables (the hopping sequence and the random target range),
each uniformly distributed across B. Since target range and
hopping sequence are statistically independent, the resulting
distribution on the beat frequencies is triangular, where the
base of the triangle is across twice the original bandwidth. The
SNR loss during each hop interval is found by integrating the
beat frequency distribution over the sample bandwidth. This
results in each range suffering the same average loss in SNR.

For Ts < Tp, the story is somewhat different. Observe
in Figure 2 that each of the possible returns has a constant
frequency offset from the center of BIF . Because of this, the
γτn−i will have the same distribution as τ except scaled by
γ and shifted to the center of BIF . Therefore, an efficient
hopping pattern hops uniformly around BIF . The expected
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Fig. 1. An example of a uniformly random hopping de-chirp. Reference
signal ”hops” are shown vs. time, as well as the beat frequency time profile
that results from the de-chirping process. Here Ts > Tp, so that the beat
frequency will vary over B the bandwidth of the received signal

Fig. 2. An example of a uniformly random de-chirp, its frequency ”hops”
plotted vs. time and the results of de-chirping on a typical receive pulse, its
beat frequencies plotted against time. Here Ts < Tp, so that de-chirp will
vary over BIF the implied bandwidth of range swath at any given moment

loss is again found by finding the distribution of beat frequen-
cies that results from uniformly distributed hops and the range
pdf, and then integrating over the sample bandwidth. In this
case, however, each range can suffer a different loss in SNR,
especially at the endpoints of the swath.

Define the compression ratio C as the ratio of the IF
Bandwidth to the compressive receiver’s sample rate C =
BIF /Fs. For random de-chirp, with any range distribution,
the loss in SNR is at least C. For uniformly distributed target
range, the expected loss in SNR will never be better than C
even for custom-designed hopping sequences. For non-uniform
distributions it’s possible to decrease the expected loss.

Though expressed as an inequality, (5) can be used to
maximize the expected energy for a given range distribution
and thus the expected SNR. At the n’th interval βn is chosen
so as to maximize the integration in (5) over frequency. This
will maximize the expected energy in the sample bandwidth
across the range swath, the equivalent of enhancing the most
likely ranges.

To express the de-chirping procedure in a matrix form con-
sistent with the CS literature, we form the column vector y =
[y0 ... yN ]T from samples of (3) where yn = y(t; τ)|t=n/Fs

,
and samples are taken at rate Fs. Thus, the sensing-matrix
based representation of (3) becomes

y = Kr(τ) = HXH
0 r(τ), (6)

where H represents filtering followed by sampling at rate
Fs. The de-chirp signal x0(t), either designed or random,
is embedded along the diagonal of the matrix-operator X0,
with the off-diagonal elements left as zero. The de-chirp,
filtering, and sampling processes can be combined into the
measurement matrix-operator K. We model the analog signal
r(t; τ) via samples over the range swath plus the pulsewidth.

These samples are generated at a rate sufficiently high (in the
Nyquist sense) for the transmit pulse, the hopping de-chirp
reference, and the de-chirped signal. Note that the de-chirp
output can have bandwidth greater than the original pulse due
to the hopping reference (consistent with the tails of the beat
frequency pdf described earlier). The received signal becomes

r(τ) = [r(tn; τ)]Tn=0,...,D−1. (7)

The simulated de-chirp reference (sampled over the same rate
and period) is placed along the diagonal of the square matrix
X0, thus acting as a mapping between spaces of equal size.

In conventional stretch processing, the sample space of y
would be of dimension N = b(Tp +Ts) min(BIF , B)c. Here,
K acts to map the higher dimensional space into a space
of size M = b(Tp + Ts)Fsc with y a vector of size M .
The compression ratio is then C = N

M . After compression,
a matched filter is formed from the hypothesized delay τi,

ζi = ((KKH)−1si)
Hy (8)

where si = Kr(τi) and i represents one of K filters from (5).

C. Multichannel Compressive Sampling
For a multichannel system with 1×L array manifold vector

a(ψ) = [1 ejψ · · · ej(L−1)ψ] where ψ is the per-element
angle-of-arrival dependent phase shift due to a target signal
incident on a uniform linear array [4]. Modify (1) to account
for a’s phase progression, then r(t; τ, ψ) = a(ψ)r(t; τ). The
discrete-time version is R(τ, ψ) = r(τ)a(ψ), and (6) becomes

Y = KR(τ, ψ) = HXH
0 R(τ, ψ). (9)

The channel responses are the columns of Y, a M×L matrix.
In the case where K is identical across channels, the single

channel data vector from (6) is sufficient to form the multi-
channel data matrix Y = ya(ψ). However, when each channel
has a different kernel Kl, we must separate the compression
effects. The pre-dechirping signal on each channel is given by

rl(τ, ψ) = r(τ)al(ψ) = r(τ)ej(l−1)ψ.

The temporal measurements on the lth channel are

yl = Klrl(τ, ψ) = HXH
0,lrl(τ, ψ)

where XH
0,l is the lth channel de-chirp reference signal matrix,

and Y = [y1 . . .yL] is the M × L data matrix.
The effects of uniformly random independent sampling

kernels (i.e., independent hopping sequences on each channel)
at C = 4 are seen in Figure 3. The ambiguity function
A(τ,Ψ) =

∣∣vec(Y(τ = τ0, ψ = 0))Hvec(Y(τ, ψ))
∣∣ is shown

for a six channel system, along with cuts through τ = τ0
and ψ = 0. The mainlobe response is centered at (τ0, 0) as
expected; however, distortion is visible in the sidelobes due
to the random peaks and nulls of the independent kernels.
Although the mainlobe of this range-angle ambiguity function
is well formed, random high sidelobes could leak across the
filter bank causing uncompensated range-dependent distortion.
In other words, Figure 3 shows that using different compres-
sion kernels on each channel causes the range-angle ambiguity
function to be no longer separable in range and angle.
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Fig. 3. A plot of the ambiguity surface of Y centered on τ0 is shown on
the left with cuts through range (ψ = 0) and angle (τ = τ0) shown to the
right.

III. SIMULATION RESULTS

We use a Bayesian signal model, where the time-of-arrival
τi is a random variable governed by a known distribution

y = K (r(τi) + n) .

The noise vector n is sampled as in (7) from a complex
Gaussian random process distributed as n(t) ∼ CN(0, σ2

n).
SNR can be measured by examining the peak value of

the noise free measurement to the noise increase through the
system. For the single channel system, the variance is given
by σ2

n = E [n∗(t)n(t)], the expected SNR is

E[SNR] =
E(τi)[ζ

∗
i ζi]

E[ζ∗nζn]
(10)

where ζn = ((KKH)−1si)
HKn. For uniformly distributed

delays this results in a best case of E[SNR] = 1
C
Es

σ2
n

. As the
delay becomes less uncertain, we expect the SNR to increase
to its uncompressed level Es

σ2
n

.
Figure 4 shows the effects on SNR for the Ts > Tp case.

The simulation was run with a 10Mhz LFM waveform with
20dB amplitude and σ2

n = 1. The compression is set to
C = 2 in the left panel and C = 4 in the right. The range
swath is twice the pulsewidth, 20µs and 10µs respectively.
Two different types of de-chirp reference signals were used,
one from the process described in II-B for expected energy
maximization and the other, a uniformly randomly distributed
de-chirp. With no compression (Nyquist rate sampling) we
expect a 20dB SNR for both average and expected SNR (losses
are with respect to this value).

The delay (τ ) is distributed as Gaussian with mean τ0 and
standard deviation varying along the x-axis and scaled to range
bins. For each point along the x-axis we form a new reference
for both types of de-chirps, designed and random. A target is
placed separately in each range bin in the swath, and the SNR
is computed for both de-chirps at that range-bin.

The average SNR (the red line in both graphs) is found by
taking the average SNR across the swath using the designed
de-chirp. We expect a loss of 3dB in the left panel and 6dB
in the right (based on the compression ratio). However, it
is slightly higher (1-2dB) in both graphs due to modulation
effects creating by ”hopping” over very short time intervals
(many successive hops at short time intervals will cause signal
energy to leak out of the sample bandwidth).

Fig. 4. A plot of SNR vs. the standard deviation of a Gaussian distributed
target range measured in range bins for both a 2:1 and 4:1 compression (one
range bin = 15m). Shown are the maximum expected SNR from the designed
de-chirp plus the average SNR and SNR given a uniformly random de-chirp
for a signal that would be 20dB SNR with no compression.

We use (10) and the distribution of τ to compute the
expected SNR (the blue line) for each point on the x-axis. The
expected SNR increases with decreasing uncertainty about the
target location, until it reaches it’s maximum value of 20dB.
Thus showing that a hopping de-chirp measurement kernel can
be designed to exploit prior information (the distribution of
τ ) about target locations. For example, the hopping sequence
might be optimized to emphasize roads and de-emphasize
shadowed ranges.

The expected SNR from a uniformly random de-chirp (the
black line) is also shown. Here we predicted a loss of 4 dB in
the left panel and 6.3 dB in the right (based on the expected
distribution after de-chirp). The slightly higher losses than
expected in the right hand graph are again from modulation
(high hopping rates).

IV. CONCLUSION

We have evaluated the effects of random as well as struc-
tured hopping for a possible implementation of compressing
sampling stretched processing. We have explored the possibil-
ity of extending this concept to a multi-channel architecture,
and shown that while independent kernels can be compen-
sated in mainlobe, in the sidelobe distortion as a function of
range will remain. We have shown that the process described
in II-B is capable of increasing expected SNR based on prior
information; however, the effects from switching at high rates
have yet to be incorporated. It is expected that degradation
in SNR should occur if de-chirps are formed that switch at
every possible time interval. Further research will incorporate
modulation effects as well as adding constraints that will
minimize the number of switches within the algorithm.
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