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ABSTRACT

Adaptive beamformers are sensitive to model mismatch, especially when the desired signal
is present in the training data. In this paper, we reconstruct the interference-plus-noise
covariance matrix in a sparse way, instead of searching for an optimal diagonal loading
factor for the sample covariance matrix. Using sparsity, the interference covariance matrix
can be reconstructed as a weighted sum of the outer products of the interference steering
vectors, the coefficients of which can be estimated from a compressive sensing (CS)
problem. In contrast to previous works, the proposed CS problem can be effectively solved
by use of a priori information instead of using [;-norm relaxation or other approximation
algorithms. Simulation results demonstrate that the performance of the proposed adaptive
beamformer is almost always equal to the optimal value.

Sparse reconstruction

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive beamforming is used to detect and estimate the
signal-of-interest at the output of a sensor array by means of
adaptive spatial filtering and interference suppression. It has
been widely used in radar, sonar, seismology, radio astron-
omy, wireless communications, acoustics, medical imaging,
and other areas [1,2]. When there is no required knowledge
of direction, blind source separation based beamforming
tries to recover the source signals relying on the properties
of the signals, such as the constant modulus especially in
wireless communication [3,4] (see also Chapter 6 of [2] and
the references therein). Instead, when the directions of the
source signals are available, the Capon adaptive beamformer
is an optimal spatial filter that maximizes the array output
signal-to-interference-plus-noise ratio (SINR) [1]. However, it
is also known to be sensitive to model mismatch, especially
when the desired signal is present in the training data. In
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such a case, the Capon beamformer suffers severe perfor-
mance degradation. In addition, in practical applications the
required interference-plus-noise covariance matrix cannot
be perfectly estimated due to the limited training samples.
Therefore, adaptive beamforming approaches must be robust
against covariance matrix uncertainty.

Diagonal loading is a simple and well-known robust
adaptive beamforming technique [5]. However, there is no
clear guideline to choose an optimal loading factor in
different scenarios. Worst-case performance optimization
[6,7] can also be regarded as a diagonal loading technique;
however, the worst case does not always occur, and the
norm upper-bound of the mismatch vector is usually a
priori unknown. Hence, worst-case optimization is still
suboptimal. In the past years, some user parameter-free
adaptive beamforming algorithms were proposed (see, for
example, [8], and the references therein). Unfortunately,
these techniques obtain estimates of the theoretical covar-
iance matrix of the received signal, instead of the required
interference-plus-noise covariance matrix. More recently,
covariance matrix reconstruction methods were proposed
[9,10]. In [9], the covariance matrix was reconstructed
by locating the nulls of the beampattern of the Capon
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beamformer. However, all interference powers are set to
the largest eigenvalue of the sample covariance matrix,
which is not optimal. In addition, the number of sources is
also difficult to determine. In [10], the covariance matrix
was reconstructed based on the Capon spatial spectrum,
which usually underestimates the interference powers.
Furthermore, the computational complexity is compara-
tively large because of the integral operation.

Considering the fact that the number of sources is
typically less than the number of sensors in array signal
processing, in this paper we reconstruct the interference-
plus-noise covariance matrix in a sparse way. The recon-
structed interference covariance matrix is a linear combi-
nation of the outer products of the interference steering
vectors weighted by their individual powers, which can be
estimated from a compressive sensing (CS) problem. This
approach allows the desired signal to be removed out from
the covariance matrix reconstruction; hence, there will
be no signal component in the reconstructed covariance
matrix, which mitigates the signal self-nulling problem. In
the last decade, many signal recovery algorithms were
proposed in the field of CS, such as l;-norm convex
relaxation [11,12] and greedy iterative algorithm [13]
(see also [14] and the references therein). Unlike the
previous works which mainly exploited the sparsity or
compressibility, the proposed CS problem in this paper can
be effectively solved by use of a priori information of the
directions of the source signals, which can be estimated in
advance. And hence, a closed-form solution of the CS
problem can be derived. Numerical examples demonstrate
that the performance of the proposed adaptive beamform-
ing algorithm is nearly equal to the optimal value over a
wide range of signal-to-noise ratios (SNRs). Meanwhile,
the technique has low computational complexity.

2. The signal model

The output of a narrowband adaptive beamformer with
M omni-directional sensors at time k is given by

y(k) = wHx(k), M

where w=[wy,....wy]' eC¥ is the beamformer weight
vector, and ()" and ()"’ denote the transpose and Hermitian
transpose, respectively. The array received vector Xx(k)=
[x1(k), ..., xp(k)]" € CM can be represented as

X(k) = X5 (k) +X;(k) +Xp(k), 2)

where X;(k) = as(k), x;(k), and x, (k) are statistically indepen-
dent components of the desired signal, interference, and
noise, respectively. In the desired signal term, ae ¥ is the
spatial steering vector of the signal waveform s(k).

The optimal weight vector w can be obtained by max-
imizing the beamformer output SINR as

Eqw"xs[?) _ ofwa)
E{wH(X;+Xn)} ~ WHR;, W’

SINR £ 3)
where o2 2 E{|s(k)|?} is the signal power, R;,, 2 E{(X;(k)+
Xn(k)(Xi(k)+Xn (k)1 e MM is the interference-plus-noise
covariance matrix, and E{-} denotes statistical expectation.
The SINR maximization problem (3) is mathematically equiva-
lent to the minimum variance distortionless response (MVDR)

problem [15]:

min w'R;, ,w subjectto wHa=1, (4)

which solution
~1
Ri + na

afl Ri:—]n a ’

Wopt = 5)
is sometimes referred to as the Capon beamformer. From this
principle of MVDR, several robust adaptive beamforming
algorithms have been developed and successfully applied in
a wide range of areas (see [16] and the references therein).

Since the exact interference-plus-noise covariance

matrix R;,, is not easy available even in signal-free
applications, it is usually substituted by the sample covar-
iance matrix R = 1/KYX_ x(k)x"(k) with K training snap-
shots, and the obtained adaptive beamformer wgy =
A — ~—1 . . . .
R a/al"lR a is called the sample matrix inversion
(SMI) adaptive beamformer [17]. Whenever there is a
desired signal, the SMI beamformer is in essence the
minimum power distortionless response (MPDR) beam-
former [1] instead of the MVDR beamformer (5). As K
increases, R will converge to its theoretical version R =
c2aa +R;, ,;, and the corresponding SINR will approach
the optimal value as K— oo under stationary and ergodic
assumptions. However, when the number of snapshots K
is small, the large gap between R and R is known to
dramatically affect the performance of the SMI beamfor-
mer, especially when there is a desired signal in the
training samples [5,18].

In previous works, researchers have focused on finding
the optimal loading factor for R, which inevitably results
in performance degradation, especially at high SNRs (see
[8] and the references therein). The main reason is that
the signal is always active in any kind of diagonal loading
beamformers, and its effect becomes more and more
pronounced with the increase of SNR [10]. In order to
avoid the self-nulling phenomenon, in this paper, we will
reconstruct the desired interference-plus-noise covariance
matrix R; ., directly, rather than searching for the poten-
tial optimal diagonal loading factor.

3. The proposed algorithm

In order to reconstruct the interference-plus-noise
covariance matrix R;,,, we need to know the steering
vectors of all interferences and their powers, together with
the noise power. When the number of interferences, their
locations, and their powers are unknown, the covariance
matrix R;,, can be estimated as [10]

Rin= /a Beapon(@d(@)d" (0) do )

where d(¢) is the steering vector associated with a
hypothetical direction ¢ based on the known array struc-
ture.

1

— 1 (7)
d" R 'd©)

i) Capon (9) =

is the Capon spatial power spectrum estimator [15], and & is
the complement sector of @. That is to say, ® N © =0 and
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O U O covers the whole spatial domain. In general, the
desired signal is assumed to be located in a known angular
sector @, which is distinguishable from the locations of the
interferences. And hence, the covariance matrix estimator
R; +n collects all interference and noise in the out-of-sector 6.
In array signal processing, the number of sources is
typically assumed to be less than the number of sensors.
That is to say, the sources are of sparse nature in the
observation field. In such case, the integral operation of (6)
over the entire @ is unnecessary. Instead, the interference-
plus-noise covariance matrix R;,, can be reconstructed
based on this sparsity of sources. As we know, lp-norm
(denoted by Il - Ip) equals the count of nonzero entries of a
vector, and is an ideal measure of sparsity. Therefore, a
sparsity-constrained optimization problem for determin-
ing the source locations and their powers can be formu-
lated as
min IR—DPD" — 71l +7Ipllo

subjectto pz0, o2 >0, (8)

where peR’)’r is the spatial spectrum distribution on
the sample grid of all locations of interest {01, 6,,...,0n},
P =diag{p} is the corresponding diagonal matrix, D=
[d(01),d(9>), ...,d(ON)] € CM*N is the array manifold matrix,
oy is the noise power, I is an identity matrix, and Il - II¢
denotes the Frobenius norm of a matrix. The number of
potential sources N will typically be much greater than the
number of sources L or the number of sensors M. The
optimization problem (8) is a CS problem [14]. The idea
behind (8) is intuitive in the sense that it tries to find
the sparsest spatial spectrum p and the noise power o'i
such that the estimated theoretical covariance matrix
DPD" + 621 approximates R, where the parameter y con-
trols the tradeoff between the sparsity of the spectrum and
the residual norm.

However, it is well known that (8) is a difficult
combinatorial optimization problem due to the ly-norm,
and is intractable for even moderately sized problems. In
the past years, many approximations have been devised,
such as greedy approximations [13,19] and I,(p < 1) relaxa-
tions [14,20]. When the solution p is sufficiently sparse,
the ly-norm can be approximately replaced by the [;-norm,
which leads to the basis pursuit denoising (BPDN) problem
[11] as
min IIR-DPD" — 21112 +ylipl,

P,a%

subjectto p=0, o2>0. 9)

Unlike (8), (9) is convex and can be solved using convex
optimization software. Besides the BPDN, the LASSO (least
absolute shrinkage and selection operator) [12] is another
popular formulation based on Il;-norm relaxation. How-
ever, the solution is not absolutely sparse because of the [;-
norm relaxation. In addition, the regularization parameter
y is also difficult to determine in different scenarios. Either
overestimation or underestimation will sacrifice the bal-
ance between data-fidelity and sparsity, which leads to
performance degradation of the system.

Unlike previous works that focus on [;-norm relaxation, in
this paper the CS problem (8) will be solved by decomposing

it into two separate sub-problems: first, we find the direction-
of-arrival (DOA) support of the sources by exploiting the
available training data; second, we estimate the powers of
these sources via an inequality-constrained least squares
problem operating on the DOAs found in the first step. The
combination of these two steps represents an approximation
to the solution to (8).

In array signal processing, the DOAs are usually esti-
mated either from a spectral search algorithm or a search-
free method (via polynomial rooting) (see [1,21] and the
references therein). For the sake of explanation, in this
paper, we simply use the classical Capon spatial spectrum
Pcapon (7) to estimate the DOAs of sources, namely the
support of the sparse vector defined in the Ip-norm
minimization problem of (8), although there are many
sophisticated DOA estimation algorithms for uncorrelated
and/or correlated sources (see, for example, [1,20] and the
references therein). Let ¢, denote the set of directions
corresponding to the peaks of Py, 0N the entire angular
sector, for which the cardinality (denoted by | - | of a set) is
usually greater than the number of sources because of the
spurious peaks, i.e., |8,| = I pllp > L. In order to miny lIpllo,
a common idea is to remove the spurious peaks by setting
a threshold, such as the noise power 2, which can be
approximately estimated as the minimum eigenvalue of R
[22]. In theory, there are M—L same eigenvalues as the
actual noise power aﬁ. However, when the number of
snapshots is limited, the minimum eigenvalue of R is
always less than the noise power ai. And hence, if a peak’s
value is less than the threshold, it can be regarded as
a spurious peak and removed from 6,. After removing
the spurious peaks, the residual set can be denoted as
0p=1{0p1....0p0), which is of cardinality |#,| = Q < M. And
hence, min, Iplo=Q.

Because of the high resolution ability, the DOA of the
desired signal can be located by searching for the peak of
Pcapon i @, and the corresponding steering vector can be
denoted as a. When there is no peak in ©, which is very
common at low SNRs, we must assume a DOA ¢ for the
desired signal using some prior knowledge, although the
assumed direction may be different than the actual DOA,
and a = d(é;).

After finding the DOA support, the CS problem (8)
degenerates into an inequality-constrained least squares
problem:

min IR —621-D@,)P@,)D"@,)!?
P©))
subject to  p(@,)>0, (10)

where p(@,) e RY .. is the power distribution on 6,, P(@,) =
diag (p(@p)) is the corresponding diagonal matrix, and
D(@p) =[d(p1), ...,d(0p0)] € C"*2 is the corresponding array
manifold matrix. Because the performance of adaptive beam-
former is not very sensitive to errors in the noise power, 62 is
taken to be the minimum eigenvalue of R, instead of an
optimization variable as seen in (8).

Without the inequality constraint, the closed-form
solution to (10) can be given by

p@,) = (GG 'G"r 11)
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where G =[vec(d(@,1)d"(@,1)), ..., vecd(@p0)d" (@p0))] €

CM**Q and r=vec(R—42I) e C™" are obtained by stacking
the array responses and the sample covariance matrix
subtracted by a noise covariance matrix, respectively.
Then, the estimated spatial spectrum of (8) is Q-sparse as

p@y), 6€d,
0) = P 12
p(o) {0’ 040, (12)

Namely, only Q entries of p(9) are nonzero and all other
(N—Q) are zero. We illustrate the proposed sparse spatial
spectrum in Fig. 1, where the source signal steering vectors
are exactly known as the first example in Section 4.

However, when the source powers are small, there may
be one or more negative entries in p(d,) as given in (11).
We can assume without loss of generality that the g-th
entry of p(@,) is negative, p(@p4) <O0. In this case, the
inequality constraint of (10) will not be satisfied, and the
solution (11) should be modified. A simple method is
to force p(d,4) to be a small positive number § > 0 (for
example, 5§=10"> will be used in our simulations), and
the power estimation of the remaining sources will be
modified as

P@)=0G'6)'G'r (13)

where Ep = [épj eens ép,q, 1, ép,q+1, ey ép’Q]T e RQ- ]), G=
(vec(d(@,1)d"@p,1)), ..., vecd(@yq_1)d" @4 1)), vecd (Bpq1)d”
Bpgs1)s - vec(d@p)d"(@p0))] cMx@-1 and F=vec

(R—621-5d(@p)d" (@) eC”. In other words, we re-
calculate the source powers after fixing the power of small
sources, which results in a modified spatial spectrum as

pP@,)., 0€0,
p@) =1 4 0=0pq, (14)
0, 040,

which is still Q-sparse.

- - -Capon spectrum, (7)
30 - —=o Proposed sparse spectrum, (12)
20 al
— I
o h
T 10r 1| -
— [} II L
g [ I8 [
S i s I\l
o i 1 ‘I i
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Y 1 “ I
’ 1 ' !
!
—10;__.__"/ “s / “\_/ \ SalLmNl LawES=
_20 L L L L L L L L L

-80 -60 -40 -20 0 20 40 60 80
00
Fig. 1. Spatial spectrum comparison from one trial, where three sources

from DOAs of —50°, —20° and 5° are with SNR=30 dB, 30 dB and 20 dB,
respectively.

Using the Q-sparse spatial spectrum p(#), the interference-
plus-noise covariance matrix can be reconstructed as
N Q N Ly B
Rijn= Z p(ap,i)d(ep,j)d (‘9p,i)+0'nl’ (15)

j=1j#q

where d(@,;)d"(9,,) is the outer product of the j-th inter-
ference steering vector d(@,). By use of the sparse character-
istics, the integral operation of (6) can be effectively simplified
to a summation operation (15).

Substituting R;.., and i into (5), we can get the adap-
tive beamformer based on interference covariance matrix
sparse reconstruction as

Wszwin. (16)

The interference covariance matrix sparse reconstruction-
based adaptive beamforming algorithm is summarized in
Table 1.

The computational complexity of the proposed algorithm
is O(NM?) with N> M, which is mainly dominated by the
spectral search. If a search-free DOA estimation technique [21]
is adopted, the computational complexity can be further
decreased to O(max(M>, Q2M?)), where O(M?>) is the com-
plexity of search-free DOA estimation and O(Q*M?) is the
complexity of power estimation (11). Therefore the proposed
beamforming algorithm has complexity slightly larger than
the DOA estimation algorithm. Meanwhile, the computa-
tional complexities of covariance matrix reconstruction
methods [9] and [10] are O(max ((|@]/|6 U O))NM, M>))
and O((]@]/|6 U ©])NM?), respectively. Note however that if
the spatial estimate of the sources in the whole region is
desired, the SMI beamformer has complexity O(NM?) as well.

4. Simulation results

In our simulations, a uniform linear array (ULA) with
M= 10 omni-directional sensors spaced half wavelength apart
is considered. It is assumed that there is one desired signal
from the presumed direction 6 =5° and two uncorrelated
interferences from —50° and — 20°. The interference-to-noise
ratio (INR) in each sensor is equal to 30 dB. The additive noise
is modeled as a complex circularly symmetric Gaussian zero-
mean spatially and temporally white process. When compar-
ing the performance of the adaptive beamforming algorithms
in terms of the input SNR, the number of snapshots is fixed to
be K=30. In the performance comparison of mean output
SINR versus the number of samples, the SNR in each sensor is
set to be fixed at 20 dB. For each scenario, 1000 Monte-Carlo
trials are performed.

Table 1
Interference covariance matrix sparse reconstruction-based adaptive
beamforming algorithm.

Step 1: Estimate the DOAs of the sources.

Step 2: Solve (10) to get the Q-sparse spatial spectrum estimator
p©) (12) or (14).

Step 3: Reconstruct the interference-plus-noise covariance matrix
lii +n (]5)~

Step 4: Calculate the adaptive beamformer ws (16) with the
modified steering vector a.
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The proposed adaptive beamformer (16) is compared to
two other different covariance matrix reconstruction-
based adaptive beamformers [9] and [10], and the adaptive
beamformer based on covariance matrix reconstruction
plus steering vector estimation [10], because most of
the existing adaptive beamformers will suffer performance
degradation especially at high SNRs [10]. As a reference,
the worst-case-based beamformer with parameter
e=0.3M of [6] is also shown in our simulations. Mean-
while, the nominal steering vector is normalized so that
lall? =aHa= M(=10) [6,7]. As recommended in [10], @ is
set to be [#s—5°,6;+5°] (namely [0°,10°]), and the corre-
sponding out-of-sector is ® =[—90°,68s—5°) U (6s+5°,90°]
(namely [—90°,0°) U (10°,90°]). The sampling grid is uni-
form in ® U @ with 0.1° increment between adjacent grid
points. Performance is presented in terms of deviation
from the optimal SINR.

4.1. Example 1: exactly known signal steering vector

In the first example, we consider an ideal case when
the spatial signatures both of the signal and of the
interferences are exactly known. Note that even in this
ideal case, the presence of the desired signal in the
training data may substantially degrade the output per-
formance of adaptive beamformers as compared with the
signal-free training data case [1,6,10]. However, it can be
seen from Fig. 2(a) that the performance of the proposed
beamformer is almost always equal to the optimal SINR for
all values of SNR from —30 to 50 dB, which illustrates its
high dynamic range. Specifically,

SINR = lal2SNR = M x SNR, 17)

which achieves the design goal of the adaptive beamfor-
mers. Furthermore, the proposed beamformer outper-
forms the others. In detail, there is about 0.15dB
performance losses for the adaptive beamformer [10],
which is because the Capon spatial spectrum (7) under-
estimates the interference powers. In addition, there is
about 0.5 dB performance losses for the adaptive beam-
former [9] at high SNRs, which is because in such cases
the largest eigenvalue of the sample covariance matrix

a

—+— Worst-Case, [6]
—oe— Reconstruction, [9]
—a— Reconstruction, [10] 1
—v— Reconstruct-Estimate, [10]

—*— Proposed Reconstruction, (16)
02 1

Deviations from Optimal SINR (dB)

-0 0 10 20 30 40 50
INPUT SNR (dB)

OUTPUT SINR (dB)

379

adopted in [9] is corresponding to the desired signal
instead of the interferences. It should be noted that the
signal power is 100 times larger than the interference
power in the case of SNR=50 dB, which can be used to
illustrate the situation when the signal-to-interference
ratio (SIR) approximately approaches to oo. Fig. 2(b) shows
the performance of the methods tested versus the number
of training snapshots K, where the performance curve of
the worst-case-based beamformer is not plotted because it
is much worse than the others at high SNRs [10].

4.2. Example 2: random sources look direction mismatch

In the second example, a more practical scenario with
random DOA mismatch is considered. The random DOA
mismatch of both the desired signal and the interferences
are uniformly distributed in [—4°,4°]. That is to say, the
actual DOA of signal is uniformly distributed in [1°,9°],
and the DOAs of interferences are uniformly distributed in
[—54°, —46°] and [—24°, —16°]. Note that the random
DOAs of the signal and the interferences change from trial
to trial but remain fixed from snapshot to snapshot.

It can be seen from Fig. 3(a) that the performance of the
proposed beamformer is much closer to the optimal SINR
than others. There is approximately 0.6 dB performance
degradation when SNR is less than —10dB, which is
because there may be no peak in the angular sector @
for the Capon spectrum or the peak's value is less than the
threshold; therefore, the presumed DOA is taken as the
center of the desired signal sector and the source DOA
mismatch will be present. In addition, due to the grid limit,
the performance of the proposed adaptive beamformer
does not exactly converge to the optimal one when SNR is
larger than O dB. In detail, the maximum estimation error
of source DOAs should be 0.05°, half grid increment of 0.1°,
which will degrade the performance of the proposed
adaptive beamformer (16) because both the reconstructed
covariance matrix R;, , and the modified steering vector a
depend on the DOA estimation. A possible solution to
mitigate the effects of grid limiting is the grid refinement
method [20], with which method the maximum estimation

30
298 | 1
296 1
29.4 »/\A/\/\f\/\/\w
—— Reconstruction, [9]
—— Reconstruction, [10]
—— Reconstruct-Estimate, [10]
—— Proposed Reconstruction, (16)
292 I I I I

10 20 30 40 50 60 70 80 90

Number of snapshot

100

Fig. 2. First example: Exactly known signal steering vector. (a) Deviations from optimal SINR versus SNR, (b) output SINR versus number of snapshots.



380

a
2} —+— Worst-Case, [6]
—e— Reconstruction, [9]
—a— Reconstruction, [10]
—v— Reconstruct-Estimate, [10]
16 } —*— Proposed Reconstruction, (16)

1.2

0.8

Deviations from Optimal SINR (dB)

0.4

0 i i N * N X N
-30 -20 -10 0 10 20 30 40 50
INPUT SNR (dB)
Fig. 3. Second
snapshots.
a
10 T T T
—+— Worst-Case, [6]
—e— Reconstruction, [9]
— —&— Reconstruction, [10]
% 8 | v Reconstruct-Estimate, [10]
E:’ —#*— Proposed Reconstruction, (16)
Z
(2]
E o
a
(@]
IS
g 4y
(2]
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kS
3 2}
o
0! :
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—— Reconstruction, [9]
—— Reconstruction, [10]

—— Reconstruct-Estimate, [10]
—— Proposed Reconstruction, (16)
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28.4
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example: Random sources look direction mismatch. (a) Deviations from optimal SINR versus SNR, (b) output SINR versus number of

28.5

28+ 1
—— OPTIMAL SINR
—— Reconstruction, [9]
—— Reconstruction, [10] H
—— Reconstruct-Estimate, [10]
—— Proposed Reconstruction, (16)

275}

27

40 50 60 70

Number of snapshot

100

Fig. 4. Third example: Incoherent local scattering. (a) Deviations from optimal SINR versus SNR, (b) output SINR versus number of snapshots.

error of source DOAs can be effectively reduced. And then,
the proposed adaptive beamformer ws (16) is more close to
the optimal beamformer Wy, (5). In addition to the faster
convergence rate of the adaptive beamforming based on
interference covariance matrix reconstruction [10], the per-
formance of the proposed beamforming algorithm based on
interference covariance matrix sparse reconstruction keeps
stable with the increase of SNR while others not as shown
in Fig. 3(b).

4.3. Example 3: incoherent local scattering

In the third example, we assume incoherent local
scattering of the desired signal, which is common in array
signal processing due to the multipath scattering effects
caused by the presence of local scatters. The signal is
assumed to have a time-varying spatial signature as [6,10]

4
a(k) = so(kyd(6s)+ z ; si(ld(y), (18)

where s;(k) ~N(0,1), [=0,1,2,3,4 are independently and
identically distributed (i.i.d.) zero-mean complex Gaussian
random variables changing from snapshot to snapshot,
0, ~N(6s,4°), 1=1,2,3,4 are the random DOAs changing
from run to run while remaining fixed from snapshot to
snapshot. This corresponds to the case of incoherent local
scattering [23], where the signal covariance matrix R is no
longer a rank-one matrix. In the general-rank case, the
output SINR should be rewritten as [18]

wHR,w
SINR = WR, W’ (19)
which is maximized by [18]
Wopt = PR} Rs), (20)

where P{-} stands for the principal eigenvector of a matrix.
It can be seen from Fig. 4 that the proposed beamforming
algorithm outperforms than all other methods tested
especially at high SNRs. In detail, there is about 7.5 dB
performance losses for the adaptive beamformer based
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on interference covariance matrix reconstruction [10]. The
main reason is that the signal-of-interest leaks into the
out-of-sector @ due to the incoherent local scattering, and
then the reconstructed covariance matrix R,-+n (6) is
contaminated by the leaked signal component. However,
there is almost no performance losses for the proposed
beamformer because it is based on covariance matrix
sparse reconstruction with knowledge of the estimated
DOAs of sources.

5. Conclusion

In this paper, we proposed a simple, effective adaptive
beamforming algorithm, which is robust against covar-
iance matrix uncertainty. When the sources are sparsely
distributed, accurate interference covariance matrix recon-
struction can be achieved by estimating the sparse spatial
spectrum distribution from a CS problem, which provides
a quasi-signal-free environment. The proposed CS problem
can be effectively solved with a priori information (i.e., the
estimated source DOAs in array signal processing) rather
than l;-norm relaxation-like approximations. Simulation
results demonstrate the effectiveness of the proposed
algorithm. Compared with existing techniques, the perfor-
mance of the proposed method is nearly optimal over a
wide range of SNR. In addition, the technique also has low
computational complexity.
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