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Abstract— Direction-of-arrival (DOA), power, and achievable
degrees-of-freedom (DOFs) are fundamental parameters for
source estimation. In this paper, we propose a novel sparse
reconstruction-based source estimation algorithm by using a
coprime array. Specifically, a difference coarray is derived from
a coprime array as the foundation for increasing the number of
DOFs, and a virtual uniform linear subarray covariance matrix
sparse reconstruction-based optimization problem is formulated
for DOA estimation. Meanwhile, a modified sliding window
scheme is devised to remove the spurious peaks from the
reconstructed sparse spatial spectrum, and the power estimation
is enhanced through a least squares problem. Simulation results
demonstrate the effectiveness of the proposed algorithm in
terms of DOA estimation and power estimation as well as the
achievable DOFs.

Index Terms— Coprime array, DOA estimation, power
estimation, source enumeration, sparse reconstruction.

I. INTRODUCTION

AS a fundamental application in array signal processing,
source estimation has been widely used in radar, sonar,

acoustics, astronomy, seismology, wireless communications,
medical imaging, and other areas (see, for example, [1]–[16],
and the references therein). It is common in practice that the
number of sources to be estimated is larger than the number of
sensors in the array. However, the degrees-of-freedom (DOFs)
of the conventional source estimation algorithms are limited by
the number of sensors. In general, an array with M physical
sensors can identify up to M − 1 sources. To detect more
sources, additional sensors are required to increase the achiev-
able number of DOFs, which leads to an increased complexity.
Therefore, an active research topic has been focused on how
to increase the number of DOFs for source estimation.

Although sparse arrays such as minimum redundancy
array (MRA) [17] and minimum hole array (MHA) [18],
have been proven to enable to increase the number of DOFs,
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there is no closed form expression for the exact location
of sensors in sparse arrays. Until recently, several attractive
sparse array configurations have been proposed to support
systematical design of sparse arrays. Two important array
configurations are the nested array [19] and the coprime
array [20]. The former can obtain O(M2) DOF with only
M physical sensors, the latter can reach up to O(M N) DOF
with M + N − 1 physical sensors. Hence, coprime array
has attracted great interests in DOFs increase, direction-of-
arrival (DOA) estimation, adaptive beamforming, and source
localization [21]–[26].

Among these studies, some works have considered how to
achieve high-resolution DOA estimation by using the large
array aperture of coprime array. For example, a search-free
DOA estimation algorithm using the coprime array [22] can
achieve near optimal estimation performance in some signal-
to-noise ratio (SNR) ranges. By decomposing a coprime
array into a pair of sparse uniform linear arrays (ULAs), the
DOAs can be estimated by pairing the common peaks in the
spatial spectra of the pair of decomposed subarrays [21], [27].
However, the maximum achievable DOFs have not been fully
exploited by using coprime array directly.

To take full advantage of the potential DOFs provided by
coprime array, a lot of efforts have been conducted on design-
ing effective DOA estimation algorithms using the derived
difference coarray. To name a few, a super-resolution spec-
trum estimation algorithm was proposed in [28] by applying
the spatial smoothing technique. In [29]–[31], the idea of
sparse recovery was introduced to detect multiple sources.
In [32], compressive sensing was introduced to formulate an
optimization problem for DOA estimation, where the sparsity
of the sources was exploited. More recently, generalized
coprime array configurations [33] were developed for DOA
estimation, and the Toeplitz property of correlation matrix
was also exploited [25]. These algorithms are able to identify
more sources than sensors, i.e., the number of DOFs can be
increased by using the derived difference coarray. However,
there may exist several spurious peaks in the estimated spatial
spectrum, which will dramatically affect the overall source
estimation performance. In this sense, it still remains a chal-
lenging problem to perform accurate DOA estimation with full
utilization of potential DOFs provided by coprime array.

DOA, power, and the achievable DOFs are the fundamental
parameters for source estimation. Instead of investigating the
DOA estimation performance only, in this paper, we simul-
taneously consider these parameters and develop an effective

1558-1748 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



756 IEEE SENSORS JOURNAL, VOL. 17, NO. 3, FEBRUARY 1, 2017

source estimation algorithm from a sparse reconstruction per-
spective by using a coprime array. Specifically, we formulate
an optimization problem for source estimation by minimiz-
ing the difference between the derived spatially smoothed
covariance matrix and the sparsely reconstructed covariance
matrix corresponding to the virtual uniform linear subarray.
Considering that there is usually no priori information about
the number of the sources, it is difficult to distinguish and
remove the spurious peaks in the estimated spatial spectrum.
To address this issue, we devise a modified sliding window
scheme for source enumeration, which determines the number
of sources and removes the spurious peaks. Moreover, the
power estimation is also enhanced by solving a least squares
problem with the estimated DOAs as the support information.
Simulation results demonstrate the superiority of the proposed
source estimation algorithm on spectrum characteristic, source
enumeration, DOA estimation, and power estimation.

The main contributions of this paper can be categorized as
follows.

• We propose a sparse reconstruction-based source estima-
tion algorithm using coprime array, which simultaneously
considers the estimation accuracy of DOA and power as
well as the number of DOFs;

• We incorporate the spatially smoothed covariance matrix
corresponding to the virtual uniform linear subarray to
perform DOA estimation from a sparse reconstruction
perspective;

• We devise a modified sliding window scheme to remove
the spurious peaks from the reconstructed spatial spec-
trum;

• We utilize the estimated DOAs to enhance the power
estimation through solving a least squares problem.

The remainder of this paper is organized as follows.
In Section II, we introduce the signal model of the coprime
array. In Section III, we elaborate the proposed sparse
reconstruction-based source estimation algorithm, and in
Section IV, we compare the performance of the proposed
algorithm with others. We make our conclusions in Section V.

Throughout this paper, we denote vectors and matrices by
lower-case and upper-case bold characters, respectively. The
superscripts ( · )∗, ( · )T , and ( · )H denote the conjugate, the
transpose, and the Hermitian transpose of a vector or a matrix,
respectively. vec( · ) denotes the vectorization operator that
stacks the column vectors of a matrix one by one. And diag( · )
denotes a diagonal matrix where the vector is in its diagonal or
a vector consisting of the diagonal elements of a matrix. The
curled inequality symbol � denotes componentwise inequality
between vectors. ‖ · ‖0, ‖ · ‖1, and ‖ · ‖F denote the �0 norm,
�1 norm, and the Frobenius norm, respectively. E[ · ] denotes
the statistical expectation operator, and ⊗ denotes the
Kronecker product. Finally, I denotes the identity matrix with
appropriate dimension unless otherwise specified.

II. SIGNAL MODEL OF COPRIME ARRAY

Consider a pair of sparse ULAs with M and N sensors,
respectively, where M and N are coprime numbers. As shown
in Fig. 1(a), the array consisting of M sensors has inter-
element spacing of Nd , whereas the array consisting of

Fig. 1. Coprime array configuration. (a) Coprime pair of sparse ULAs.
(b) Aligned coprime array.

N sensors has inter-element spacing of Md . Without loss of
generality, we assume that M < N , and d is chosen to be
λ/2, where λ denotes the signal wavelength. As Fig. 1(b)
shows, a special array geometry called the coprime array can
be generated by combining the pair of sparse ULAs [20].
According to the properties of coprime numbers, other than
the first sensor serving as the reference, the other sensors do
not overlap with each other when the pair of sparse ULAs are
aligned. Therefore, the coprime array consists of M + N − 1
physical sensors in total, and the last element is located at
(N − 1)Md .

The difference coarray can be calculated as

x(m, n) = Mn − Nm, (1)

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. Since M
and N are coprime, M N different values corresponding to
the M N combinations of (m, n) can be obtained for x(m, n).
Hence, a virtual array with M N nominal sensors locating at{
(Mn − Nm)d, 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1

}
can be

generated by using only M + N − 1 sensors, which means
the number of DOFs can be increased from O(M + N) to
O(M N). Moreover, if the negative part of x(m, n) is also
included, more than O(M N) DOFs can be obtained within

−M(N − 1) ≤ x(m, n) ≤ M(N − 1). (2)

which in most cases is a non-consecutive difference coarray
because there exist several missing elements called holes. For
example, the elements −11, −8, 8 and 11 are the holes when
M = 3 and N = 5.

To address this problem, we double the aperture of the array
with M sensors in Fig. 1(a) to obtain an extended coprime
array [28], which consists of 2M + N −1 sensors as shown in
Fig. 2. Similarly, the difference coarray set derived from the
extended coprime array becomes

Sd = {
x̄(m, n)| x̄(m, n) = ±(Mn − Nm),

0 ≤ m ≤ 2M − 1, 0 ≤ n ≤ N − 1
}
, (3)

from which a consecutive difference coarray subset ranging
from −M N to M N can be picked up. Hence, a consecutive
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Fig. 2. Extended coprime array configuration. (a) Double the aperture of the
array with M(M < N) sensors. (b) Aligned extended coprime array.

virtual ULA with the aperture of 2M Nd is obtained, which
the nominal sensors locate at

{ − M Nd,−(M N − 1)d, · · · ,
−d, 0, d, · · · , (M N − 1)d,M Nd

}
.

Assume there are K far-field, uncorrelated, narrowband
signals impinging on the extended coprime array from the
directions θ = [θ1, θ2, · · · , θK ]T . The received signal vector
at time index t can be modeled as

y(t) =
K∑

k=1

a(θk)sk(t)+ n(t) = A(θ)s(t)+ n(t), (4)

where A(θ) = [
a(θ1), a(θ2), · · · , a(θK )

] ∈ C(2M+N−1)×K

denotes the coprime array steering matrix, s(t) =[
s1(t), s2(t), · · · , sK (t)

]T ∈ CK denotes the signal waveform
vector, and n(t) ∼ CN (0, σ 2

n I) denotes the additive Gaussian
white noise vector. Here, σ 2

n denotes the noise power. For
simplicity, we use A to represent the steering matrix A(θ)
throughout the rest of this paper. The k-th column of the
steering matrix A,

a(θk) =
[
1, e−j 2π

λ u2d sin θk , · · · , e−j 2π
λ u2M+N−1d sin θk

]T
(5)

is the array steering vector corresponding to the k-th source,
where j = √−1, and {ui d, i = 2, · · · , 2M + N − 1} denotes
the sensor positions in the extended coprime array.

The covariance matrix of the received signal vector y(t) can
be expressed as

R = E
[
y(t)yH (t)

]

=
K∑

k=1

σ 2
k a(θk)aH (θk)+ σ 2

n I

= APAH + σ 2
n I, (6)

where σ 2
k denotes the signal power of the k-th source, and

P = diag

([
σ 2

1 , σ
2
2 , · · · , σ 2

K

]T
)
. (7)

Considering that R is unavailable in practice, it is usually
replaced by the sample covariance matrix

R̂ = 1

T

T∑

t=1

y(t)yH (t), (8)

where T denotes the number of snapshots. Note that R̂ is the
maximum likelihood estimator of R, and it converges to R
as T → ∞ under stationary and ergodic assumptions [34].
However, when T is small, the large gap between R̂ and R
will affect the estimation performance.

III. PROPOSED SOURCE ESTIMATION ALGORITHM

BASED ON SPARSE RECONSTRUCTION

In this section, we propose a novel sparse reconstruction-
based source estimation algorithm using coprime array. First,
a full rank covariance matrix corresponding to the virtual
uniform linear subarray is constructed by using the spatial
smoothing technique. Then, we estimate the sparse spatial
spectrum by minimizing the difference between the spatially
smoothed covariance matrix and the sparsely reconstructed
covariance matrix. Since the number of the sources is usually
a priori unknown, we also devise a modified sliding window
scheme for source enumeration. Finally, the power estimation
is enhanced through a least squares problem.

A. Covariance Matrix Construction by Spatial Smoothing

Generally, the DOFs of source estimation problem are
limited by the number of sensors. To exploit the increased
number of DOFs provided by coprime array, we first construct
a covariance matrix corresponding to the virtual uniform linear
subarray from the sample covariance matrix corresponding to
coprime array.

The sample covariance matrix R̂ can be vectorized as

z � vec(R̂) = Bp + σ 2
n i, (9)

where B = [
a∗(θ1) ⊗ a(θ1), a∗(θ2) ⊗ a(θ2), · · · , a∗(θK ) ⊗

a(θK )
] ∈ C(2M+N−1)2×K , p = diag(P) = [

σ 2
1 , σ

2
2 , · · · , σ 2

K

]T
,

and i = vec(I). The vector z can be regarded as an equivalent
received signal of the virtual array with the corresponding
steering matrix B. In this interpretation, z behaves like a single
snapshot, and the rank of the covariance matrix calculated
from the equivalent virtual array received signal z is one.
Therefore, the DOAs can hardly be identified from z when
there are multiple incident sources.

To address this problem, the spatial smoothing tech-
nique [35] is a good candidate. Specifically, since the spatial
smoothing technique requires a consecutive array geometry,
we first construct a matrix B1 ∈ C(2M N+1)×K by removing
the repeated rows in the matrix B and sorting the remaining
rows, so that the rows in B1 are identical to a consecutive
virtual ULA with 2M N + 1 nominal sensors located from
−M Nd to M Nd . The new vector z1 can then be expressed
as

z1 = B1p + σ 2
n i1, (10)
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where i1 ∈ R2M N+1 denotes a zero vector except that there is
a unit element at the (M N + 1)-th position.

After the new vector z1 is derived, the consecutive virtual
ULA can be divided into M N + 1 overlapping subarrays
with M N + 1 nominal sensors for each subarray, where the
i -th subarray has the sensors located at

{
(−i + 1 + n)d,

n = 0, 1, · · · ,M N
}

. The equivalent received signal vector
of the i -th virtual uniform linear subarray can be denoted as

z1i = B1i p + σ 2
n i1i , (11)

where B1i ∈ C
(M N+1)×K denotes the steering matrix corre-

sponding to the (M N +2− i)-th through the (2M N +2− i)-th
rows of B1, and i1i ∈ RM N+1 denotes a zero vector except
that there is a unit element at the i -th position. Calculating
the correlation statistics of each subarray received signal z1i

yields the following rank-one covariance matrix

Ri = z1i zH
1i . (12)

The spatially smoothed covariance matrix can then be obtained
by averaging Ri over the M N + 1 subarrays as

Rs = 1

M N + 1

M N+1∑

i=1

Ri , (13)

which is now full rank, and enables us to identify up to
M N sources by using only 2M + N − 1 physical sensors.
As a basic step, the derived spatially smoothed covariance
matrix Rs will be applied in the following DOA estimation
problem for increasing the number of DOFs.

B. DOA Estimation Based on Sparse Reconstruction

In this subsection, we perform DOA estimation based on
the idea of sparse reconstruction. Specifically, we replace K
in the definition of the theoretical covariance matrix R (6) by a
much larger integer K̄ , which denotes the number of potential
sources in a predefined spatial grid. The corresponding sparse
covariance matrix can be written as

R̄ =
K̄∑

k=1

σ̄ 2
k a(θ̄k)aH (θ̄k)+ σ 2

n I = ĀP̄Ā
H + σ 2

n I, (14)

where the diagonal matrix P̄ = diag

([
σ̄ 2

1 , σ̄
2
2 , · · · , σ̄ 2

K̄

]T
)

consists of the power of K̄ potential sources with DOAs
θ̄ = [

θ̄1, θ̄2, · · · , θ̄K̄

]T
, and Ā = [

a(θ̄1), a(θ̄2), · · · , a(θ̄K̄ )
] ∈

C(2M+N−1)×K̄ denotes the corresponding steering matrix. The
diagonal of P̄ is sparse, which means only a few non-zero
entries appear on the spatial grid corresponding to the actual
source directions.

The basic idea of covariance matrix sparse reconstruction
is to minimize the difference between the sample covariance
matrix R̂ and the reconstructed covariance matrix R̄ under the
sparse constraint. Note that this approach has been successfully
applied in adaptive beamforming [36], where near optimal
output signal-to-interference-plus-noise ratio (SINR) perfor-
mance can be achieved. Nevertheless, when the approach is
incorporated into DOA estimation, two major challenges will
be encountered. First, the noise power approximated by the

minimum eigenvalue of the sample covariance matrix R̂ in [36]
is invalid when the number of sources is larger than the number
of sensors. Second, the approximate threshold presented
in [36] fails to effectively eliminate all spurious peaks, which
will degrade the DOA estimation performance.

To address these challenges, we consider minimizing
the difference between the spatially smoothed covariance
matrix Rs and the sparsely reconstructed covariance matrix
corresponding to the virtual uniform linear subarray

R̃ = ÃP̄Ã
H + σ 2

n Ĩ, (15)

where Ã = [
ã(θ̄1), ã(θ̄2), · · · , ã(θ̄K̄ )

] ∈ C(M N+1)×K̄ denotes
the steering matrix of the virtual uniform linear subarray with
the aperture of M Nd , and Ĩ denotes the M N + 1 dimensional
identity matrix. The DOA estimation problem based on sparse
reconstruction can be formulated as

min
p̄,σ 2

n

‖p̄‖0

subject to
∥
∥
∥Rs − ÃP̄Ã

H − σ 2
n Ĩ

∥
∥
∥

2

F
≤ ζ,

p̄ � 0, σ 2
n > 0, (16)

where p̄ = diag(P̄) ∈ RK̄ denotes the spatial spectrum dis-
tribution on the spatial grid, ζ denotes a specified uncertainty
bound of the covariance matrix fitting error, and the �0-norm
denotes the number of non-zero elements in a vector. The
constraint p̄ � 0 indicates that each element of p̄ is equal to
or greater than zero. The idea of the formulated optimization
problem (16) lies in finding the sparsest spatial spectrum p̄
and the noise power σ 2

n such that minimizing the fitting error
between the spatially smoothed covariance matrix Rs and
the sparsely reconstructed covariance matrix R̃. Unlike the
sparsity-based methods using an equivalent received signal
vector in a single snapshot manner [32], [33], here the sparse
reconstruction process is formulated based on the idea of
covariance matrix fitting, and the spatially smoothed covari-
ance matrix Rs is calculated from multiple equivalent virtual
subarray received signals as in (13).

Unfortunately, the optimization problem (16) is NP hard
because of the non-convex �0-norm, which is unsolvable even
with moderately sized matrix. By introducing the �1-norm
relaxation, the original non-convex optimization problem (16)
can be reformulated as

min
p̄,σ 2

n

‖p̄‖1

subject to
∥∥
∥Rs − ÃP̄Ã

H − σ 2
n Ĩ

∥∥
∥

2

F
≤ ζ,

p̄ � 0, σ 2
n > 0, (17)

which is convex now because the �1-norm is convex. Further-
more, the above optimization problem can be expressed as a
basis pursuit denoising (BPDN) problem [37]:

min
p̄,σ 2

n

∥
∥
∥Rs − ÃP̄Ã

H − σ 2
n Ĩ

∥
∥
∥

2

F
+ ξ‖p̄‖1

subject to p̄ � 0, σ 2
n > 0, (18)

where the regularization parameter ξ balances the tradeoff
between the sparsity of the spatial spectrum and the fitting
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error of the reconstructed covariance matrix R̃. The BPDN
optimization problem (18) is convex and can be efficiently
solved. The DOA estimation θ̃ = {

θ̃1, θ̃2, · · · , θ̃Q
}

can be
obtained by searching for the peaks in the solved sparse spatial
spectrum p̄. Meanwhile, the corresponding spatial spectrum
response p̄(θ̃) can also be obtained.

It should be pointed out that the regularization parameter ξ
is not easy to choose in different scenarios, and the balance of
the tradeoff will be degraded when the regularization parame-
ter is chosen either too small or too large. In particular, with
the increase of ξ , the reconstructed spatial spectrum becomes
more sparse, which may lead to the missing of the peaks of
true DOAs. On the contrary, when ξ is selected to be too small,
the sparsity constraint becomes invalid. Existing methods
usually adopt empirical values for sparse representation (see,
for example [32], [33]). Hence, it is often unavoidable that
spurious peaks may appear in the reconstructed sparse spatial
spectrum p̄ rather than missing the true DOAs, which leads
to the overestimation of the number of the sources with a
high possibility, i.e., Q > K . To address this issue, we
consider to perform source enumeration to remove the spurious
peaks in the reconstructed sparse spatial spectrum instead of
investigating a systematic rule for regularization parameter
selection.

C. Source Enumeration via Modified Sliding Window Scheme

In this subsection, we devise a modified sliding window
scheme for source enumeration, based on which the response
components in p̄(θ̃) are classified as either signal responses or
spurious responses. Specifically, we first remove the obvious
spurious response components in p̄(θ̃) by setting a threshold
T h = λmin/10, where λmin is chosen as the minimum
eigenvalue of Rs . Considering the fact that the M N + 1
dimensional spatially smoothed covariance matrix Rs enables
DOA estimation with the number of DOFs O(M N), λmin is
capable to represent the level of noise power. If the response
component in p̄(θ̃) is less than one order magnitude of λmin ,
it is undoubtedly regarded as the spurious peak and can
be removed directly. Next, we sort the remaining response
components { p̄q ∈ p̄(θ̃), q = 1, 2, · · · , Q′} in decreasing
order as

p̄1 ≥ p̄2 ≥ · · · ≥ p̄K ≥ p̄K+1 ≥ · · · ≥ p̄Q ′, (19)

where Q′ ≤ Q with equality when there is no response
component less than the threshold in p̄(θ̃).

Then, the response components in (19) are used for source
enumeration based on a sliding window scheme. The idea
of sliding window is to calculate the energy ratio of two
consecutive sliding windows as the decision variable. When
the sliding window is either entirely in the signal response
category

{
p̄q , q = 1, 2, · · · , K

}
or entirely in the spurious

response category
{

p̄q , q = K + 1, K + 2, · · · , Q′}, the
decision variable is nearly constant since the sliding window
only contains the energy of signal response components or
spurious response components. Considering that there is a
noticeable energy gap between different response categories,
the energy contained in a sliding window is much larger than

that in the next window when the window slides over the
critical point. Based on this observation, the number of the
sources can be estimated as

K̂ = arg max
j

w j

w j+1
, ∀ j = 1, 2, · · · , Q′ − κ, (20)

where w j = ∑q= j+κ−1
q= j p̄q denotes the sum of κ response

components in the j -th sliding window. The sliding window
scheme requires κ > 1 according to (20). If κ = 1, the
estimated number of sources K̂ will be distorted due to the
possible irregular distribution of the spurious responses. On the
other hand, the number of peaks in the estimated spatial spec-
trum is relatively limited as compared to the sliding window
applications in group detection and time synchronization [38].
Hence, here we simply choose κ = 2.

Using κ = 2, the formula in (20) indicates that there
should exist at least two spurious peaks in the sorted spectrum
response set { p̄1, p̄2, · · · , p̄Q ′ }, which is not always true
especially in some relatively ideal scenarios, i.e., Q′ < K +2.
To address this problem, we introduce an artificial auxiliary
component λmin to the spectrum responses in (19) as

Sp = {
p̄1, p̄2, · · · , p̄K , p̄K+1, · · · , p̄Q ′, λmin

}
. (21)

Subsequently, we apply the sliding window process (20) to Sp

and check the critical condition K̂ +2 = Q′+1, which signifies
the fact that there exists only one spurious response component
in Sp , i.e., the introduced artificial auxiliary component λmin .
When the critical condition is satisfied, we need to add another
auxiliary component λmin to Sp , and the corresponding spec-
trum response set becomes

S′
p = {

p̄1, p̄2, · · · , p̄K , p̄K+1, · · · , p̄Q ′, λmin , λmin
}
. (22)

The spectrum response sets Sp and S′
p for the proposed

modified sliding window scheme can overcome the mismatch
caused by the non-ideal critical conditions K = Q′ − 1 and
K = Q′ − 2, respectively.

After that, the sliding window process (20) can be applied
to the processed spectrum response set Sp (21) or S′

p (22),
from which the number of sources is estimated. According
to the estimated number of sources, we regard K̂ largest
components in p̄(θ̃) as the signal responses, and the DOAs
can be obtained from the corresponding locations of these

peaks as θ̂p =
[
θ̂p1, θ̂p2, · · · , θ̂pK̂

]T
.

D. Power Estimation Enhancement

Recall that the purpose for adopting spatially smoothed
covariance matrix Rs is to take advantage of the increased
number of DOFs for DOA estimation. However, it is worth
noting that Rs is a correlation statistics of a set of equivalent
virtual subarray received signals. Hence, we prefer to use the
original sample covariance matrix R̂ to improve the accuracy
of power estimation. In detail, we re-estimate the source
power by matching the sample covariance matrix R̂ and the
theoretical covariance matrix of the extended coprime array,
where the estimated DOAs θ̂p is incorporated as a priori.
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Fig. 3. Spatial spectrum comparison. Red dashed lines indicate the DOAs of incident sources. (a) Capon method in [39]. (b) Coprime MUSIC algorithm
in [28]. (c) Sparse signal reconstruction algorithm in [32]. (d) Proposed source estimation algorithm.

In this regard, the optimization problem for enhancing power
estimation can be formulated as

min
p̄(θ̂p)

∥
∥
∥R̂ − A(θ̂p)P̄(θ̂p)AH (θ̂p)− σ̂ 2

n I
∥
∥
∥

2

F

subject to p̄(θ̂p) � 0, (23)

where p̄(θ̂p) = diag
(

P̄(θ̂p)
)

∈ R
K̂ denotes the enhanced

power estimation of the estimated DOAs θ̂p, A(θ̂p) ∈
C(2M+N−1)×K̂ denotes the steering matrix of the extended
coprime array corresponding to the estimated DOAs θ̂p, and
σ̂ 2

n denotes the estimated noise power obtained from the
optimization problem (18). According to [36], the optimiza-
tion problem (23) belongs to an inequality-constrained least
squares problem with the solution

p̄(θ̂p) =
[
UH U

]−1
UH v, (24)

where U =
[
vec

(
a(θ̂p1)a

H (θ̂p1)
)
, vec

(
a(θ̂p2)a

H (θ̂p2)
)
, · · · ,

vec
(

a(θ̂pK̂
)aH (θ̂pK̂

)
) ]

∈ C(2M+N−1)2×K̂ , and v = vec(R̂ −
σ̂ 2

n I) ∈ C(2M+N−1)2 . By matching the estimated DOAs θ̂p

with the corresponding enhanced power estimation p̄(θ̂p), we
can obtain an approximate solution to the original optimization
problem (16) as

p̄(θ) =
{

p̄(θ̂ p), θ ∈ θ̂p

0, θ /∈ θ̂p.
(25)

Intuitively, only K̂ elements in p̄ corresponding to the esti-
mated DOAs θ̂p are non-zero.

The proposed sparse reconstruction-based source estimation
algorithm summarized in Table I mainly enjoys three advan-
tages as follows. First, compared with previous estimation
algorithms using ULA, the innovative coprime array geometry
enables to detect more sources than sensors. Second, the

number of sources can be determined through a modified
sliding window scheme, from which the spurious peaks in
the reconstructed sparse spatial spectrum can be effectively
removed. Third, the accuracy of power estimation can be
improved by solving a least squares problem. The computa-
tional complexity of the proposed source estimation algorithm
is O (

K̄ 2(M N + 1)
)
, which is mainly dominated by solving

the optimization problem (18). Compared with the sparse
signal reconstruction algorithm for coprime array in [32] with
the complexity O (

2K̄ (M + N − 1)2
)
, the complexity of the

proposed source estimation algorithm is slightly larger.

IV. SIMULATION RESULTS

In our simulations, the extended coprime array consists
of a pair of sparse ULAs with 2M = 2 × 3 = 6 and
N = 5 omni-directional sensors, respectively. The array
actually consists of 2M + N − 1 = 10 sensors located at
[0, 3, 5, 6, 9, 10, 12, 15, 20, 25]d . The additive noise is mod-
eled as a zero-mean white Gaussian random process. It is
assumed that there are K = 12 distinct incident source
signals uniformly distributed from the directions −60° to 60°.
Obviously, there are more sources than sensors. The spatial
grid is uniform with 0.1° sampling interval within [−90°, 90°].
The regularization parameter ξ is empirically chosen to 0.25
for the optimization problem (18) as in [32]. For each simu-
lation scenario, L = 1, 000 Monte-Carlo trials are performed.

A. Spectrum Characteristic

In Fig. 3, we plot the normalized spatial spectra of
the coprime Multiple Signal Classification (MUSIC) algo-
rithm [28], the sparse signal reconstruction algorithm [32],
and the proposed source estimation algorithm. For an instruc-
tive comparison, we also plot the normalized Capon spatial
spectrum [39] with a fully populated ULA consisting of the
same ten sensors as the coprime array. Here, the simulation
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Fig. 4. Enumeration accuracy comparison. (a) Accuracy percentage versus SNR. (b) Accuracy percentage versus the number of snapshots.

TABLE I

SPARSE RECONSTRUCTION-BASED SOURCE ESTIMATION

ALGORITHM USING COPRIME ARRAY

parameters are set to be SNR = 0 dB and T = 500,
respectively.

From Fig. 3(a), we can see that the Capon spatial spectrum
of ULA is unable to identify all of the sources since the
available DOFs are nine. In contrast, all spatial spectra of
coprime array can identify the twelve signal sources suc-
cessfully. Therefore, the effectiveness of coprime array for
increasing the number of DOFs is verified. Although there
are more than twelve peaks in the Capon spatial spectrum
using coprime array as Fig. 3(a) shows, it is evident that
these peaks are not as sharp as those displayed in the other
spatial spectra. Moreover, we note that most peak responses
in the normalized coprime MUSIC spatial pseudo-spectrum
are underestimated as Fig. 3(b) shows, and there exist some
irregular spurious peaks around the signal response peaks for
the spatial spectrum using the sparse signal reconstruction
algorithm as Fig. 3(c) shows. In contrast, from Fig. 3(d) we
can see that the normalized spatial spectrum response for each
source is close to one, and there is no spurious peak. The
spatial spectrum comparison shows that the proposed source
estimation algorithm can decrease the spectral leakage and
achieve better spectrum characteristic.

B. Source Enumeration Accuracy

In Fig. 4, we compare the source enumeration performance
of the proposed modified sliding window scheme with the
K-means classification method [40], the second order statistic

of the eigenvalues (SORTE) method [41], the sliding window
scheme [42], the Akaike Information Criterion (AIC), and
the Minimum Description Length (MDL) criterion [43]. The
enumeration accuracy percentage is taken as the performance
evaluation measure, which calculates the percentage of correct
source enumeration among Monte-Carlo trials. Considering
that we have formulated the increased DOFs case, the sample
covariance matrix is unable to perform source enumeration
due to its limited number of eigenvalues. Instead, we use the
eigenvalues of the spatially smoothed covariance matrix Rs

to perform K-means classification method, SORTE method,
AIC, and MDL criterion. When performing the K-means
classification method, we set two clusters corresponding to the
signal component and the spurious component, respectively.
The sliding window scheme in [42] is a preliminary version
of the modified sliding window scheme in this paper. When the
accuracy percentage of each algorithm is compared in terms of
SNR, the number of snapshots is fixed as T = 500, whereas
when the accuracy percentage is performed in terms of the
number of snapshots, the SNR in each sensor is fixed at 0 dB.

It can be seen from Fig. 4(a) that the proposed modi-
fied sliding window scheme achieves a higher enumeration
accuracy than the others especially when SNR is larger than
−5 dB, and the enumeration accuracy can reach up to 97%
when SNR is larger than 5 dB. In contrast, the sliding window
scheme in [42] suffers from performance degradation since
the precondition Q′ ≥ K + 2 is no longer satisfied with the
increase of SNR. Although the enumeration performance of
the SORTE method is relatively stable, it can only guarantee
around 90% enumeration accuracy when SNR is larger than
0 dB. The K-means classification method fails to classify the
signal component and the spurious component, since it fails to
generate correct cluster centroids for clustering according to
the eigenvalues of the spatially smoothed covariance matrix.
Meanwhile, both AIC and MDL criteria also fail to perform
accurate source enumeration according to the eigenvalues of
the spatially smoothed covariance matrix. In Fig. 4(b), the
proposed modified sliding window scheme also shows the best
enumeration performance against the number of snapshots.
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Fig. 5. DOA estimation performance comparison. (a) OSPA versus SNR. (b) OSPA versus the number of snapshots.

C. DOA Estimation Performance

In the following, we compare the DOA estimation per-
formance of the proposed algorithm with the sparse signal
reconstruction algorithm [32]. Considering the fact that θ̂p
includes multiple estimated DOAs, the ready-made root-mean-
square error (RMSE) metric is no longer valid when K̂ �= K .
In order to break this limit, we introduce a modified Optimal
Sub-Pattern Assignment (OSPA) metric usually adopted in
multi-target tracking [44], to evaluate the DOA estimation
performance with undetermined number of the sources.

Denote g(φ)(θ̂p − θ) = min
(
φ, |θ̂p − θ |) for θ̂p ∈ θ̂p, θ ∈ θ ,

and �k denotes the k permutations of the set {1, 2, · · · , k}.
For θ̂p = {θ̂p1, θ̂p2, · · · , θ̂pK̂

} and θ = {θ1, θ2, · · · , θK }, if

K̂ ≤ K , the OSPA of estimated DOAs θ̂p can be defined as

OSPA(φ)DOA(θ̂p, θ)

=

√√
√
√√

1

L K

L∑

l=1

⎛

⎝ min
ψ∈�K

K̂∑

k=1

g(φ)
(
θ̂pk,l , θψ(k)

)2+φ2
(

K − K̂
)
⎞

⎠,

(26)

where θ̂pk,l denotes the estimated DOA of the k-th source in
the l-th Monte-Carlo trial, and φ denotes the cut-off parameter
that assigns the relative penalty weighting to the individual
DOA estimation and the enumeration bias. If K̂ > K , then
OSPA(φ)

DOA(θ̂p, θ) = OSPA(φ)
DOA(θ , θ̂p). In our simulations, we

choose the cut-off parameter φ = 10°, which denotes the
maximum spacing of the twelve uniformly distributed sources
within [−60°, 60°]. By using the OSPA metric defined in (26),
both the RMSE of each DOA estimation and the number of
estimated DOAs are evaluated simultaneously.

The OSPA versus SNR is plotted in Fig. 5(a) with the
number of snapshots T = 100, 500, and 1000, respectively.
We also compare the OSPA versus the number of snapshots
in Fig. 5(b) with the fixed SNR at 0 dB, 15 dB, and 30 dB,
respectively. For simplicity, we use the abbreviation SSR to
represent the sparse signal reconstruction algorithm [32] in
the legend. We can observe from Fig. 5 that the proposed
algorithm shows a significant advantage over the sparse signal

reconstruction algorithm. The OSPA of the proposed algorithm
decreases as the SNR increases or the number of snapshots
increases. In contrast, the OSPA of the sparse signal recon-
struction algorithm remains at approximately the same value,
and the performance improvement is not obvious with the
increase of SNR or the number of snapshots. The reason can be
clearly found in Fig. 3(c), where the irregularity of spurious
peaks leads to the non-ideal DOA estimation performance.
Moreover, the proposed algorithm enjoys around 13 dB OSPA
superiority over the sparse signal reconstruction algorithm
when SNR = 30 dB and T = 1000.

Note that the DOAs of the sources will not always fall on
the predefined spatial grids in our simulations. According to
the parameter setting, only two sources are located exactly on
the spatial grids. This is a typical basis mismatch problem,
which motivated the recent off-grid DOA estimation research
either using the total variation norm [29], [45] or using the
atomic norm [46], [47]. Besides these, we can also consider
the grid refinement method [48] to alleviate the off-grid
effect and improve the accuracy of DOA estimation. In this
paper, we mainly focus on the source estimation problem by
simultaneously considering three fundamental parameters.

D. Power Estimation Performance

We now compare the power estimation performance of the
proposed source estimation algorithm with the sparse signal
reconstruction algorithm [32]. To perform a fair comparison,
we assume here that the number of the sources is exactly
known a priori, i.e., K̂ = K . We define the relative error of
power estimation as

1

L K

L∑

l=1

K∑

k=1

∣
∣ p̄k,l − σ 2

k

∣
∣

σ 2
k

, (27)

where p̄k,l denotes the estimated power of the k-th source in
the l-th Monte-Carlo trial.

The relative error of power estimation versus the
SNR and the number of snapshots are displayed in
Fig. 6(a) and Fig. 6(b), respectively. From Fig. 6(a), we can
see that the relative error of power estimation for the proposed
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Fig. 6. Power estimation performance comparison. (a) Relative error of power estimation versus SNR. (b) Relative error of power estimation versus the
number of snapshots.

algorithm is less than −10 dB when the SNR is larger than
5 dB and the number of snapshots is larger than 500. Although
the power estimation performance of the proposed algorithm
is slightly inferior to the sparse signal reconstruction algorithm
when SNR is less than −8 dB, there exists more than 6 dB
performance advantage when SNR is larger than 5 dB with
T = 1000, which is benefited from the enhanced power
estimation via the least squares problem (24). From Fig. 6(b),
we can see that the proposed algorithm outperforms the
sparse signal reconstruction algorithm in the whole snapshots
range we considered. Instead, the sparse signal reconstruction
algorithm cannot obtain more accurate power estimation by
increasing the number of snapshots. That is to say, the power
estimation accuracy can be effectively enhanced with the
formulated least squares problem (23).

V. CONCLUSIONS

In this paper, we proposed a virtual uniform linear subarray
covariance matrix sparse reconstruction-based source estima-
tion algorithm by using coprime array. The extended coprime
array makes it possible to increase the number of DOFs to
O(M N) with 2M+N −1 sensors, from which an optimization
problem for source estimation is formulated by minimizing the
difference between the spatially smoothed covariance matrix
and the sparsely reconstructed covariance matrix. The source
DOAs are estimated through solving the formulated optimiza-
tion problem under the sparsity constraint. In order to elimi-
nate the spurious peaks, we devise a modified sliding window
scheme for source enumeration. Finally, the power estimation
is enhanced through an inequality-constrained least squares
problem to improve the estimation accuracy. Simulation results
demonstrate the performance advantages of the proposed
algorithm over other existing source estimation algorithms
according to multiple evaluation metrics, such as spectrum
characteristic, source enumeration accuracy, DOA estimation,
and power estimation. Although the proposed source estima-
tion algorithm simultaneously considers the three fundamental
parameters and enjoys certain performance advantages, it
does depend on the predefined spatial grids for sparse

reconstruction. In practical applications, the actual DOAs of
the signals not always fall on the predefined grids. Hence,
off-grid DOA estimation problem formulation and algorithm
development could be an interesting topic in future.
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