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Abstract—Difference images quantify changes in the object
scene over time. In this paper, we use the feature-specific imaging
paradigm to present methods for estimating a sequence of differ-
ence images from a sequence of compressive measurements of the
object scene. Our goal is twofold. First is to design, where possible,
the optimal sensing matrix for taking compressive measurements.
In scenarios where such sensing matrices are not tractable, we
consider plausible candidate sensing matrices that either use
the available a priori information or are nonadaptive. Second,
we develop closed-form and iterative techniques for estimating
the difference images. We specifically look at �- and �-based
methods. We show that �-based techniques can directly esti-
mate the difference image from the measurements without first
reconstructing the object scene. This direct estimation exploits the
spatial and temporal correlations between the object scene at two
consecutive time instants. We further develop a method to estimate
a generalized difference image from multiple measurements and
use it to estimate the sequence of difference images. For �-based
estimation, we consider modified forms of the total-variation
method and basis pursuit denoising. We also look at a third
method that directly exploits the sparsity of the difference image.
We present results to show the efficacy of these techniques and
discuss the advantages of each.

Index Terms—Compressive sensing (CS), difference images, fea-
ture-specific imaging (FSI), �-reconstruction, �-reconstruction.

I. INTRODUCTION

T HE IDEA OF computing differences between images to
better perform a given task is ubiquitous in research liter-

ature. Applications range from watermarking [1], [2] and ma-
terial inspection [3] to video compression [4], biomedicine [5],
astronomy [6], and change detection in remote sensing [7]. In
this paper, using the concept of difference images, we present
techniques to estimate a sequence of temporal changes in an
object scene of interest by taking compressive measurements
of the scene. Difference images result from subtracting the ob-
ject scene at two time instants and therefore capture the changes
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in the scene over time. The novelty here is that instead of con-
ventionally imaging the scene, compressive projective measure-
ments along with linear and nonlinear estimation techniques are
used to estimate the changes by exploiting various properties
such as spatiotemporal cross correlation and difference-image
sparsity. The projective measurement of the object scene in-
volves linearly mapping a higher dimensional object space to
a lower dimensional measurement space leading to real-time
data compression1 and the resulting benefit in reduced sensor
cost. This approach can be contrasted with the traditional ap-
proach of conventional imaging, where the goal is to obtain a
pretty picture and then extract relevant information as a post-
processing step. Another benefit is the improved detector-noise-
limited measurement fidelity and, consequently, improved esti-
mation performance particularly in the low signal-to-noise ratio
(SNR) regime. This improvement is due to two related reasons:
The first is we consider knowledge-enhanced measurements (or
features), where we incorporate available a priori scene infor-
mation to define the lower dimensional space where the object
scene is projected. Second, due to this lower dimensional projec-
tion, the same number of object-scene photons are incident on
a smaller number of photodetectors compared with the conven-
tional case, leading to improved measurement fidelity for fea-
tures that matter the most.

This notion of using task-specific features informed by a
priori knowledge is referred to as feature-specific imaging
(FSI) in the literature. The work by Neifeld and Shankar [8]
was the first formalization of this idea. The work itself was
motivated by earlier work in computational imaging related to
hardware–software codesign [9], development of information
metrics [10]–[13], and nontraditional [14] and novel imaging
systems [15]–[17]. Here, our objective is twofold. First is
to design, where possible, the optimal projection space for
estimating difference images and, in scenarios where this is not
possible, to propose plausible candidates. Second is to develop
closed-form and iterative techniques for estimating the differ-
ence images. Toward this end, we consider estimation error
minimization based on the and norms. For an vector

, the and norms are defined as
and , respectively.

The -based linear estimation method provides an efficient
closed form of the difference-image estimation operator [18].
We also show that -based estimation allows us to directly esti-
mate the difference image without first reconstructing the object
scene at the consecutive time instants. We show that an imme-
diate consequence of direct estimation is the ability to exploit
the spatiotemporal cross correlation between the object scene at
the consecutive time instants. We further generalize the defini-
tion of the difference image to include the difference between

1We make the notion of compression precise in Section II.

1057-7149/$26.00 © 2011 IEEE



UTTAM et al.: FEATURE-SPECIFIC DIFFERENCE IMAGING 639

the object scene at nonadjacent time instants and show how suc-
cessive compressive measurements over the corresponding time
interval can be used to directly estimate this generalized differ-
ence image.

We next study the -based estimation as it allows us to ex-
ploit the sparsity of the difference image. We set up the -based
estimation problem as a linear inverse problem with different
regularizers representing different points of view of the estima-
tion problem. The first regularizing condition simply imposes
the sparsity constraint on the difference image. We then consider
a modified form of a total-variation (TV) regularizer. When we
make the reasonable assumption that the image is a function of
bounded variation (BV), TV is a natural measure used to capture
edge discontinuities, i.e., an important feature in difference im-
ages. Lastly, we look at overcomplete representations by consid-
ering a modified form of basis pursuit (BP) denoising (BPDN).
We empirically show that by using either available a priori in-
formation or that learned from training data, we get better per-
formance than the compressive sensing (CS) paradigm of a spar-
sifying dictionary incoherently coupled with a random sensing
matrix (e.g., Gaussian or Bernoulli/Radermacher matrices).

CS was introduced through a series of papers by Candés,
Romberg, Tao [19]–[23], and Donoho [24]. To make the CS idea
concrete, let us consider signal that we sense (or mea-
sure) by projecting it onto the set of vectors to get the
following measurements:

(1)

For a conventional imager, will comprise the standard Eu-
clidean basis with yielding a traditional image of the
object scene. On the other hand, if the values are, e.g., the
discrete Fourier basis, then we take the frequency measurements
of the object, as in magnetic resonance imaging. Using matrix
notation, we can write (1) as . Given the set of mea-
surements , the goal is to reconstruct signal . CS is inter-
ested in solving this problem when the system is underdeter-
mined , i.e., the number of measurements is much
less than the native dimensionality of the signal. Using data ac-
quisition terminology, we take the undersampled measurements
of the signal. In general, this problem is ill-posed and has in-
finitely many solutions. However, if we know that signal is

-sparse in some basis, then CS proves that it is possible to
recover by making measurements
and by reconstructing with greedy algorithms or convex op-
timization methods. -sparse means that the signal has only

nonzero coefficients in some basis . A more realistic sce-
nario is to consider a compressible signal with largest coef-
ficients containing most of the signal information. In this case,
CS is able to recover the coefficients. The main difference
between CS and FSI is in the nature of the sensing matrix em-
ployed. In CS, the sensing matrix is a random matrix (Gaussian
or Bernoulli/Radermarcher) satisfying the restricted isometry
property. In FSI, on the other hand, the sensing matrix is de-
signed using prior knowledge of the object scene. Either para-
digm can be appropriate for a given situation, but if the partic-
ular exploitation task and the prior scene information are known,
then the FSI paradigm can be very useful.

This paper and our earlier initial work [25] are the first ap-
plication of the FSI paradigm to estimating difference images
from compressive scene measurements. Recently, based on the
CS idea, Wakin et al. [26] have proposed a single-pixel camera
that sequentially takes compressive measurements of the scene.
These measurements were then used to reconstruct the scene.
Using this camera and incorporating difference images of the
evolving background model and the test images, Cevher et al.
[27] used CS theory to develop an interesting method to recover
foreground innovations. Elsewhere [28], Cevher et al. used Ising
support model to capture the clustered nature of foreground ob-
jects to reduce the number of compressive measurements re-
quired for robust recovery of the background-subtracted sparse
image using a lattice-matching pursuit greedy algorithm. The
use of a CS-based random sensing matrix allows the authors
to exploit computer-vision ideas to perform background sub-
traction [29]. Our emphasis here is on the FSI sensing-matrix
design in conjunction with various difference-image estimation
techniques. Consequently, we do not focus on identifying fore-
ground innovations within the difference images themselves.
Another distinction is that employing random measurements al-
lows Cehver et al. [27] to relate the object scene with the mea-
surements through the central limit theorem. In our case, due to
the structure that the sensing matrix possesses, such an associ-
ation has not yet been established. Such an association would
allow us to develop a sensing-matrix update model similar to
a background update model employed in background subtrac-
tion. Here, we take the first steps in employing FSI ideas to dif-
ference-image estimation and defer sensing-matrix updates to
future work.

In Section II, we give a formal definition of the difference
image. In Section III, we detail our linear -based estimation
method, whereas in Section IV, the -based estimation problem
is discussed. Finally, in Section V, we present our results. We
conclude in Section VI.

II. DIFFERENCE IMAGE

We define the difference image to be the residual image re-
sulting from subtracting the object scene at two consecutive time
instants from each other. Fig. 1 illustrates the basic idea behind
difference images. Fig. 1(a) and (b) shows a scene with moving
targets at two consecutive time instants. Fig. 1(c) shows the dif-
ference image resulting from subtracting imaged scene 1 from
imaged scene 2. Let and be the object scenes at con-
secutive time instants and , respectively. Then, we define
the th difference image to be

(2)

Furthermore, generalizing this definition, we define the gen-
eralized difference image between the object scene at th and

th time instants as

(3)

We will use this definition of the generalized difference image
in Section III-G when we discuss a method to directly estimate
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Fig. 1. (a) Object scene � at time instant � . (b) Object scene � at time
instant � . (c) Resulting truth difference image���� � � � � .

a generalized difference image by taking compressive measure-
ments over the time period .

Compressive measurements reduce the dimensionality of the
measured data compared with the native dimensionality of the
scene. Inherent in this comparison is the discretization of the ob-
ject space with respect to a certain object resolution . Let the
object scene be by unit distance. Then, the pixel dimension
of the scene is by . Mathematically, the
discretized scene is generally expressed in a vector form with
dimension . Setting , we think of the scene as
an vector. Therefore, would be the dimension of the
sensor array if conventional imaging were being used. Hence-
forth, when we talk about reduced dimensionality of compres-
sive measurements, it will be with respect to this maximal con-
ventional imaging dimension.

Measurements of the scene are taken with respect to a cer-
tain measurement basis whose matrix representation we refer
to as the sensing matrix . Compressive imaging systems opti-
cally project (inner product) scene onto each row (measure-
ment basis) , where , of resulting in
measurements , where . Many potential
optical architectures can be designed for taking these compres-
sive measurements. For a more detailed discussion of these op-
tical architectures, we refer the reader to [30].

The FSI architectures perform incoherent imaging. Inco-
herent imaging systems are linear in intensity, thus limiting
the sensing-matrix entries to positive values. However, the
optimal mathematically derived sensing matrix can have
negative entries. To bridge the gap between practice and
theory, we need a way to physically implement the bipolar
entries of the sensing matrix without violating the positivity
requirement. One such method is dual-rail signaling con-
sisting of two complementary arms. One arm implements

(the positive entries of are kept, whereas the negative
ones are set to zero) to get , and the second arm
implements (the absolute values of the negative entries
are kept, whereas the positive ones are set to zero) to get

. The resulting measurement is then given by

. More
flexibility can be added to this basic setup, as discussed in [8].

Another constraint on the sensing matrix comes from the pas-
sive nature of the optical architecture. An imager cannot in-
crease the number of photons collected by the photo detector.
In other words, the total number of photons entering the optical
system is the same as the number leaving it. This condition man-
ifests itself as the photon count constraint, which says that the
absolute maximum column sum of (or the induced 1 norm of

) is 1. To ensure this constraint is met for the sensing matrix
being considered, the sensing matrix has to be normalized by
its maximum column sum. Let . Then, the
sensing matrix satisfying the photon count constraint is given
by .

From here, we assume that we have the capability to imple-
ment optically the sensing matrix satisfying the photon count
constraint.

III. LINEAR -BASED ESTIMATION

A. Data Model

Let and be the object scene at the first two consecu-
tive time instants and , respectively. Following the expla-
nation in the previous section, the scene at both time instants
is assumed to be discretized and is represented as a vector of
size . Let us also define and to be the two corre-
sponding optical sensing matrices of size . The rows
imply taking measurements of the object scene. Thus, the
sensing matrices can be thought of as projection ma-
trices that project the scene from an -dimensional space to
an -dimensional subspace. Using these sensing matrices, we
take measurements of the scene at the two time instants. The
data model is given by

(4)

(5)

where and represent the sensor AWGN noise with the
noise variance and zero mean. Our goal is to estimate the dif-
ference image , given measurements and , by finding
the estimation operator that minimizes the norm of the error
between the truth difference image and the estimated difference
image. If we take a Bayesian approach to the linear model in (4)
and (5), then minimizing the norm is the same as minimizing
the Bayesian MSE (BMSE). The Bayesian assumption allows
us to represent the scene as a stochastic process and, as a con-
sequence, allows us to incorporate the (spatial) autocorrelation
and (spatiotemporal) cross-correlation information between the
scene at the two time instants in the estimation operator. Using
estimation theory terminology, we call the estimation operator
the linear MMSE (LMMSE) estimation operator.

B. Indirect Image Reconstruction

Before we present our method, we briefly discuss a possible
approach—in line with the classical use of MMSE opera-
tors—for estimating difference images. We call this method
intermediate image reconstruction (IIR). As illustrated in
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Fig. 2. (a) IIR. (b) Direct difference image estimation.

Fig. 2(a), it involves reconstructing each object scene sepa-
rately from its respective measurements and then subtracting
these intermediate stage reconstructions to get the estimated
difference image.

Reconstructing the object scene at both time instants means
that (4) and (5) can be separated into two standalone problems.
We define the reconstructed object scenes for the two time in-
stants as

(6)

where values, with , are the linear reconstruction
operators. For each , we separately minimize the BMSE as

(7)

with respect to .
The resulting reconstruction operators and are given

by the well-known MMSE equation as follows:

(8)

where is the autocorrelation matrix of the object scene and
is the noise covariance matrix. We always assume that we

have already subtracted off the mean from the scene. If this is
not the case, we can trivially modify (8) to account for the mean.
If we make the additional assumption that the first two moments
completely describe the scene statistics, then (8) will be the op-
timal solution. These assumptions, however, are rarely true in
practice. Despite this restriction, as shown in Section V, it turns
out that LMMSE operators are good and computationally effi-
cient estimation operators.

Given the reconstruction operators, the indirectly estimated
difference image is given by

(9)

C. DDIE

The intermediate step involving object-scene reconstruction
in the IIR method is an unnecessary step. If we remove that step
by reconstructing the difference image directly from the mea-
surements and , we can better estimate the truth differ-
ence image. The reason is that we can incorporate not only the
spatial correlation between pixels (autocorrelation of the scene)
but also the temporal correlation (cross correlation between the

scene at the two time instants). We define the estimated differ-
ence image as

(10)

where and are the jointly optimized estimation opera-
tors. We call this the direct difference-image estimation (DDIE)
technique. It is visualized in Fig. 2(b). We start by looking at the
simplest case of no sensor noise.

D. DDIE: Noise Absent

Our DDIE approach makes an initial assumption of perfect
knowledge of the scene at the instant we start taking measure-
ments. From a system’s perspective, this is a reasonable as-
sumption to make. For example, the initial knowledge can be
obtained from a sensor that has been on the scene for a long
period of time. Therefore, for the time instant , we assume
perfect knowledge of the scene ( is an identity matrix), and
from onward, we begin taking compressive measurements of
the scene. We can now rewrite the data models (4) and (5) as

(11)

The BMSE we have to minimize is

(12)

Differentiating (12) with respect to and and equating
the two derivatives to zero, we get the jointly optimized estima-
tion operators to be

(13)

(14)

where , with , is the
(spatiotemporal) cross-correlation matrix between the scene at
two consecutive time steps and and are the (spatial)
autocorrelation matrices of the scene at the two time instants.

Now that we know the reconstruction operators, it is possible
to find the optimal sensing matrix (in the sense). In fact, it is
given by

(15)

where is the matrix of the eigenvectors of and is
any rank- orthonormal matrix. This is an expected result as
finding a sensing matrix that minimizes the MSE between the
truth and the estimated difference images in the absence of noise
is analogous to finding a matrix that maximizes the projection
variance of the object scene, and this is the principal component
(PC) solution. Looking at (15), we see that picks out the
first eigenvectors of to form an -dimensional sub-
space where the projection variance is maximized. Since is a
rank- orthonormal matrix, we get a rotated -dimensional
subspace. As a simple case, the orthonormal matrix can be an
identity matrix; in which case, the eigenvectors are the PCs. It
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is interesting to note that the optimal sensing-matrix solution
involves the eigenvectors of . can be interpreted in the
following way: Given the spatial autocorrelation of scene 1
and the spatiotemporal cross correlation between scenes 1 and
2, contains the extra information we get from the spatial
autocorrelation of scene 2. The optimal sensing matrix selects
the directions that maximize this information.

E. DDIE: Noise Present

In the presence of noise, the optimal sensing operators must
be modified. Due to noise, the correlation information and
are affected. The optimal LMMSE estimation operators in the
presence of noise are

(16)

(17)

where

(18)

Here, the no-noise case is modified to . Matrix
reflects the loss in correlation information in the presence of

noise. If the noise were zero, then would go to zero and
would be identical to . However, in the presence of noise,

there is a reduction in the available correlation information, and
this reduction is quantified by .

In the presence of noise, finding an optimal sensing matrix is
mathematically intractable. As a consequence, we look at a few
plausible candidate sensing matrices.

F. Sensing Matrices

PCA: We start by looking at two kinds of PCs. For the first
case, we let the rows of the sensing matrix be the eigen-
vectors of the spatial autocorrelation matrix. To a small extent,
this is similar to the solution for the no-noise case in (15) if
we were to let be an identity matrix. However, this
case only considers the spatial correlation and ignores the tem-
poral correlation. To utilize the temporal correlation informa-
tion, we also consider the difference PCs (DPCs). DPCs are the
PCs of the difference image. We compute them from the spa-
tiotemporal correlation matrix of the difference images defined
as .
Since is a symmetric matrix, its spectral factorization will
give us the DPCs. There is a twofold advantage to DPCs. First,
they implicitly use both spatial and temporal correlation infor-
mation. Second, as we are trying to reconstruct the difference
images and not the object scene itself, the PCs of the difference
image are more suitable than PCs.

PCA waterfilling: PCA is a suboptimal solution in the pres-
ence of noise as it does not adjust the energies (eigenvalues) of
the eigenvectors with changing SNR. We remedy this by con-
sidering weighted PCA, which redistributes the total available

energy among the different eigenvectors while accounting for
noise. This redistribution is achieved by maximizing the mutual
information between scene and measurement , as-
suming they are and random vectors, respectively.
We briefly discuss the suboptimality of PCA and then give the
weighted solution.

Let be the correlation matrix of scene . Then,
gives the eigendecomposition of , where is a di-

agonal matrix with the eigenvalues in de-
creasing order and columns of are the corresponding eigen-
vectors. Now, let noise be added, and let the noise covariance
matrix be given by . Note that the eigenvectors in are also
the eigenvectors for white noise. As a result, in the presence
of noise, the eigenvalues are given by . Therefore, the
presence of noise simply adds the noise variance to all the eigen-
values without adapting the eigenspectrum to the given SNR.

The PC sensing matrix
makes measurement , which lies in the subspace spanned
by the first eigenvectors. We now consider the modi-
fied sensing matrix , where

. We are still in the subspace spanned
by the first eigenvectors, but now, the diagonal elements

, where , control the weighting given to each
eigenvector. We first maximize , given an unknown but
fixed , and then use it to compute the weights , where

. By maximizing the mutual information over the
input distribution of , we get

(19)

where the maximizing input distribution is a multivariate
Gaussian. We know that a real-world object scene is not nor-
mally distributed, but nevertheless, we show in Section V that
we still get marked improvement over PCs. In the ideal scenario
of the scene being normally distributed, this solution will be
optimal. We assume the logarithm base to be 2.

To find the optimal weights , , we differen-
tiate (19) with respect to under constraint ,
where is the total energy in the object scene. Using the La-
grange multiplier and requiring , the weights are

(20)

We choose the value of the Lagrange multiplier such that
. From (20), we see that the

weights assigned to the different eigenvectors are a function
of and not just . According to (20), we must put the
available energy where is large. This is the waterfilling
solution [31]. We perform waterfilling for both PCs and DPCs
resulting in sensing matrices, i.e., waterfilled PCs (WPCs) and
DPCs (WDPCs), respectively.

Optimal solution: Since it is not mathematically tractable to
find an optimal sensing matrix in the presence of noise, we also
numerically search for the optimal solution. We perform this
search using stochastic tunneling [32], i.e., a Monte Carlo-based
technique.
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Fig. 3. Multistep DDIE. (a) Perfect knowledge of the scene is assumed at the
time instant � , and measurements are made from � on. Difference image is
estimated by propagating forward the object-scene knowledge. This propagation
is indicated by curved arrows from left to right. (b) At each pair of consecutive
time instants � and � , (21) is implemented to estimate the difference image
���� and propagate the scene knowledge.

G. Multistep DDIE and LFGDIE

As depicted in Fig. 3(a), we assume knowledge of the scene
at the first time instant and, from then on, take measurements of
the scene. Our model allows us to use a different sensing ma-
trix at every successive time instant. For simplicity, however,
we assume , where . Consequently, we have
the
sequence of measurements. Until now, we have looked at the
DDIE method for estimating the difference image between the
object scene at the first two time instants. We now extend the
DDIE method to estimate the se-
quence of difference images from the
sequence of measurements. We call this strategy the multistep
DDIE. We also present a different approach to estimating the
difference-image sequence by jointly using measurements taken
over multiple time instants.

The DDIE method assumes knowledge of scene 1 and takes
measurements of scene 2 to estimate the difference image.
Therefore, in the multistep DDIE, given measurements of the
object scenes at and , we need the knowledge of the
scene at . The multistep DDIE acquires this knowledge by
propagating forward the knowledge of the scene at [see
Fig. 3(a)]. The forward propagation is done using the following
recursive equation:

recon

recon (21)

where recon refers to the DDIE method discussed in
Section III-E. For , we replace with because
we assume the perfect knowledge of the scene at . Equation
(21) takes the estimate of the scene at and measurements at

and estimates the difference image . It then propa-
gates forward the knowledge of the scene at by computing

the estimate at . This is illustrated in
Fig. 3(b).

We refer to our second approach as the th-frame gen-
eralized difference-image estimation (LFGDIE). Given

, the LFGDIE directly estimates the
generalized difference image between the object scene
at and .

To obtain the LFGDIE operators, we first define the LFGDIE
data model as

(22)

(23)

(24)

where is the identity sensing matrix symbolizing complete
knowledge of the initial scene. Note that this model is an ex-
tension of (4) and (5) because, here, we consider multiple mea-
surements. The estimated generalized difference image is then
given by

(25)

where values, with , are the jointly optimized
estimation operators. Rewriting (25) in the matrix form, we have

(26)

where and
. Let us also define

, ,
, ,

, and , where is a
identity matrix.

Minimizing the BMSE between and by differ-
entiating it with respect to , , and , and equating the
derivatives to zero, the reconstruction operators are

(27)

(28)

(29)

where

(30)

(31)

(32)

(33)

(34)
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(35)

(36)

(37)

It is interesting to note that when , i.e., ,
, , disappears, and and

. Therefore, the LFGDIE method reduces to the
DDIE method. It is when that we see the benefit of
employing LFGDIE method. To see this, let and be the
object scenes at time instants and . Then, the generalized
difference image is given by .By rewriting this
generalized difference image, we get

(38)

where the right-hand side is a pairwise sum of difference im-
ages of the scene at successive time instants. The LFGDIE es-
timate of the generalized difference image is

, which requires joint estimation of all the successive
pairwise difference images . This joint estimation exploits
the spatial and temporal cross correlations between the scene at
all time steps, as is manifested in (27)–(37). The multistep
DDIE method on the other hand estimates , which
exploits only pairwise cross correlation between the scene at
two successive time steps. This ability of the LFGDIE method
to perform joint estimations leads to its superior performance
over the multistep DDIE as we show in Section V.

IV. -BASED ESTIMATION

The advantage of the linear -based estimation lies in its
ability to provide closed-form linear estimation operators that
minimize the MSE over an entire ensemble of object scenes.
Difference images, however, are sparse, and the -based dif-
ference-image estimation does not exploit this characteristic.
Moreover, the use of a spatiotemporal correlation matrix,
despite good results discussed in the results section, assumes
image stationarity, which is a crude assumption. We therefore
extend our study to look at the -based estimation of the
difference images. We are motivated by a few reasons; each of
which looks at the problem from a different perspective. First,
as mentioned above, difference images are sparsely represented
in pixel space (a finite-dimensional Euclidean space), and
exploiting this sparsity for difference-image estimation seems
to be a natural extension of the image restoration problem.
Second, modeling optical images as functions of BV has been
successfully used in image denoising and restoration. The use
of an -based TV measure [33] in this context has been shown
to estimate accurately edge features, which are important
components in difference images. Third, signal decomposition
using overcomplete dictionaries gives sparse signal represen-
tations with respect to atoms of these dictionaries. It has been

shown that BP gives an optimal (in sense) solution for this
signal decomposition problem [34]. These three approaches fit
well into the -based estimation of the difference image.

We consider -based difference-image estimation problem
as a linear inverse problem. The linearity comes from the for-
ward data model being defined through the linear transform
(applied to input in the presence of noise), i.e.,

(39)

The goal then of the linear inverse problem is to estimate ,
given the noisy measurements . The model in (39) is typical of

-based reconstruction problems. However, the model we have
in (4) and (5) is not of the same form as (39). Consequently, we
rewrite (4) and (5) as

(40)

where

(41)
Incorporating a sparse representation of with respect to a

sparsifying dictionary in (40), we have

(42)

where is a sparse representation of , i.e., (comparing
(39) with (42), we have .) Solution and, therefore

, to the linear inverse problem is then given by solving the
following optimization problem:

(43)

Here, the term is the fitness term controlling how much of
a fit the solution is to the measured data, whereas is the
regularizer term controlling how much the solution meets the
desired constraint. We define to be an convex regular-
izer; its form being decided by the three points of view we are
considering. The weighting factor is the regularization param-
eter.

From the first point of view, difference images are sparse in
the pixel basis. The pixel basis can be thought of as the stan-
dard basis for a finite-dimensional Euclidean space, where the
dimension is that of the object scene. Consequently, is the
identity matrix and . However, to maximize sparsity, we
define regularizer to be be a function of instead of as
follows:

(44)

It is evident that this regularizer enforces the sparsity con-
straint on the difference image by favoring values closer to 0.
Note that regularizer does not maximize the spar-
sity of the difference image but just minimizes the norm of
and, consequently, is not optimal.

For the TV restoration problem, we again consider to be an
identity matrix because, in this formulation, the function space
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of BV is defined to be on a discrete finite support. Regularizer
for the TV problem is usually defined to be either

(45)

or

(46)

where and are the isotropic and nonisotropic
discrete TV regularizers, respectively. The and opera-
tors are, respectively, the first-order horizontal and vertical dif-
ference operators. Instead of imposing the TV condition on

, however, as in (44), we impose it on the difference image
. Now, the regularizer is defined as either

(47)

or

(48)

It is easy to see that a bounded TV assumption for the object
scenes and results in also having BV. Therefore,
this modified form does not violate any TV condition.

For the sake of completeness, we also look at the difference-
image estimation using an overcomplete sparsifying dictionary

. Specifically, we consider the dictionary to be the symmetric
biorthogonal wavelet transform and the regularizer to be

. This results in the familiar BPDN model, which decom-
poses the signal as superposition of the atoms of such that
the norm of is smallest of all possible decompositions over
the dictionary. However, the set up here is slightly different
from traditional BPDN in that we include the sensing matrix

in the model. In traditional BPDN, the sensing matrix is
an identity matrix. This modification does not affect the funda-
mental problem. The classical BPDN problem can be thought
of as finding the regularized denoised sparse representation of
the object scene from the noisy version of the scene. The mod-
ified BPDN, on the other hand, finds the regularized denoised
sparse representation of the object scene from measurements of
the scene using the sensing matrix .

Notice that, by applying (42), we use to estimate
and not . Therefore, because of the system con-

straint, there is the additional step of computing from the
estimated . Estimating , however, allows us to take advan-
tage of the correlation between the object scene at the two time
instants. By solving (43), with , we compute a
joint estimate of and in the form of . Note that, although

is separable into and , is not. Similarly, in (40), we
jointly exploit the scene at the two time instants by considering
regularization terms (44), (47) and (48) that are functions of
the difference image. Regularizer (44) sparsifies the difference
image, whereas regularizers (47) and (48) minimize the TV of
the difference image. In fact, by acting directly on the difference
image, (40) exploits the correlation between the scene at the two
time instants more strongly than (42).

Extension to estimating sequences of difference images fol-
lows directly from the multistep DDIE and, more specifically,
(21). We will use the -based techniques in the multistep set-
ting. In Section V, we present the performance of these three
approaches.

A. Learning Sensing and Sparsifying Matrices

Given the above approaches to -based difference-image es-
timation, one question that naturally arises is whether we can
learn the optimal and from the available training data. Re-
cently, Carvajalino and Sapiro [35] proposed a very interesting
scheme to learn simultaneously and using training data.
The sparsifying dictionary is assumed to be overcomplete. This
assumption makes it difficult for us to apply it to our current con-
text. Consider the forward model for computing the difference
image from the object scene at two consecutive time instants.
Let the time instants be and . Then, we have

(49)

Here, is a matrix with both and being
vectors. We know that is sparse. Therefore, ideally,

we would like to find such that, when , then .
This, however, is not possible using the algorithm proposed by
Carvajalino et al. because will be a matrix, which is
not an overcomplete dictionary. Our model has a unique charac-
teristic that the forward representation is overcomplete, whereas
the one in the other direction is not. This is unlike most CS signal
models where overcompleteness of the dictionary in this other
direction is exploited to achieve sparsity. We can of course com-
pute the pseudoinverse of but that is an solution. We
therefore let be as defined in (41).

V. RESULTS

We now present our results for - and -based difference-
image estimation methods. We evaluate the performance using
measured video imagery of an urban intersection (i.e., object
scene; see Fig. 1) as the input into a simulation that models com-
pressive measurements. We use a Panasonic PV-GS500 video
camcorder to image the object scene. The reason we use conven-
tionally imaged data as the truth data and simulate the compres-
sive optical imaging system is to achieve flexibility in accurately
implementing different sensing matrices . This flexibility is
required to analyze performance of our proposed sensing ma-
trices in estimating sequence of difference images based on
and norms. On the other hand, we now have to do computa-
tionally what a compressive imaging system will do optically.
Consequently, instead of considering the entire 480 720 ob-
ject scene, we reduce the problem by looking at the scene in 8
8, 16 16, and 32 32 blocks. The blocks are stitched together
to reconstruct the difference image.

To compute the spatial and temporal correlations, we use a
training set comprising 6000 frames of the object scene. From
each 480 720 frame, we chose at random 30 blocks of sizes 8

8, 16 16, and 32 32 to give us 180 000 samples to com-
pute the spatial autocorrelation matrix. To obtain the spatiotem-
poral cross-correlation matrix between object scenes at consec-
utive time instants, we select pairs of successive frames and ran-
domly select 30 pairs of 8 8, 16 16, and 32 32 blocks
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Fig. 4. Eigenspectrum computed from the sample correlation matrix of the
difference images generated from the 6000 training set frames collected using
Panasonic PV-GS500 video camcorder (8 � 8 block size).

from each frame pair, to give us approximately 180 000 sample
pairs again. A pair of blocks consists of two blocks each drawn
from the same region of the two consecutive image frames. Sim-
ilarly, we extend the spatiotemporal correlations over longer
time lengths for the LFGDIE method where, instead of consid-
ering two successive frames, we consider multiple consecutive
frames. Once computed, these correlation matrices are stored
for use in the testing stage.

The use of a spatiotemporal correlation matrix requires the
assumption of wide-sense stationarity, which seldom holds in
practice with the possible exception of texture images. Despite
this, there is considerable literature on using second-order sta-
tistics to perform various image processing and imaging tasks
[36]–[40]. These tasks attempt to reduce the nonstationarity
by, e.g., camera tilt compensation or, in the case of eigenface
analysis, by face centering and head orientation correction.
Other methods have also been suggested for transforming
nonstationary images to exhibit stationary characteristics [41],
[42]. Such methods are at best approximate and not necessarily
suitable or directly applicable to this paper. Therefore, in this
first step toward developing an FSI-based imaging system,
we empirically show that our proposed techniques yield good
performance because of our ability to compress difference
images by exploiting second-order statistics without artificial
attempts at introducing stationarity. To illustrate this compres-
sion, we compute the eigenspectrum of the difference images
generated from the 6000 training set frames. Fig. 4 shows that
this eigenspectrum decays rapidly. This decay is a consequence
of velocities and directions of motion being constrained in
many environments of interest. These constraints can be in the
form of roads, sidewalks, trails, corridors, etc. Therefore, if we
think of difference images as a set of translated delta functions
in 2-D, the nonuniqueness of these translations due to the con-
strained motion results in the eigenspectrum decay, allowing
us to estimate the difference images, with high fidelity, from
compressive measurements of the scene. The testing data also
comprise of 6000 frames. These frames are subdivided into
100 groups; each comprising the object scene at 60 consecutive
time instants. The testing set includes diverse cases of multiple
targets moving at different speeds and directions. All perfor-
mance plots (RMSE versus SNR and RMSE versus number
of measurements per block ) in the following analysis have
been averaged over the 60 time steps and the 100 groups.

Fig. 5. Estimated difference image for SNR � �� dB and� � � using (a)
WDPC, (b) Optimal, and (c) truth difference image.

As discussed in Section III, there is no mathematically
tractable optimal sensing matrix. Currently, we con-
sider some possible choices for , which were discussed in
Section III. To remind the reader, they are PCs, DPCs, WPCs,
WDPCs, numerically computed optimal sensing matrix (op-
timal) and Gaussian random sensing matrix (GPR). The GPR
sensing matrix represents a set of fixed (aymptotically) basis
projections that do not use any a priori information about the
scene. The entries of the GPR matrix are Gaussian distributed
with a mean of zero and a variance of one. We also consider
the identity matrix (conventional) to mimic the conventional
imager. We use the conventional imager for baseline perfor-
mance comparison. The conventional imager always images
the whole scene, i.e., it always makes
measurements per frame.

A. -Based Difference-Image Estimation

Fig. 5 gives an example of an estimated difference image from
a sequence of difference images using the multistep DDIE. The
block size is 8 8, the SNR value is 10 dB, and the number
of measurements per block is 5. For

-D object scene, translates to 27 000 measure-
ments and a compression of measured data by 92.2%. The il-
lustrated example has been computed with WDPC and optimal
sensing matrices. We see that the performance of the optimal
is visually close to that of the truth difference image. More im-
portantly, the WDPC also estimates the difference image with
good results. Note that it is much easier and computationally
efficient to compute the WDPC than to numerically find the op-
timal sensing matrix. We quantify these results by plotting the
root MSE (RMSE) as a function of SNR. We define RMSE as

RMSE (50)

The normalization is done using the truth difference image
.

Fig. 6 plots the multistep DDIE method’s RMSE performance
as a function of SNR for and for the 8 8 block
size. We see an improvement in quantitative performance with
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Fig. 6. RMSE versus SNR plots for the 8� 8 block size. (a)� � �. (b)� �

�.� is the number of measurements per block.

Fig. 7. RMSE versus number of measurements� for SNR � �� dB for the 8
� 8 block size.

more measurements, with RMSE significantly decreasing for
. Fig. 7, however, shows that this is not true generally

for increasing measurements. With increasing , the perfor-
mance first improves and then can degrade. This behavior is a
direct result of enforcing the photon count constraint. For small

, any additional measurement adds more information. How-
ever, because the total number of photons is fixed, as the number
of measurements increase, additional information per measure-
ment goes down. Eventually, the additive noise overwhelms the
incremental information, and we see a degradation in perfor-
mance for larger . This is true for PC, DPC, and WPC sensing
matrices. However, both WDPC and optimal sensing matrices
avoid the degradation in performance with increasing measure-
ments because they are optimized for a given SNR. Measure-
ments are considered until they improve performance. Once in-
formation per measurement begins to be drowned out by noise,
the additional measurements are ignored. There seems to be a
certain discrepancy between the example estimates in Fig. 5 and
the plots in Fig. 6(b). Although the visually estimated differ-
ence image looks good, the plots for have a relatively
high RMSE. This discrepancy is because minimization mini-
mizes the MSE over an ensemble and does not explicitly enforce
sparsity. Consequently, there are small deviations (from the true
pixel values) spread out over the whole estimated difference
image. These small deviations from the truth, when normalized
against the sparse truth difference image, bias the RMSE.

In Fig. 6, we can make a few observations about the efficacy
of the various sensing matrices. As expected, waterfilling does
improve performance of both PCs and DPCs by weighting the
projections according to noise statistics. This is more evident

Fig. 8. (a) Performance comparison between single-step and multistep DDIE
methods for � � � and SNR � �� dB using WDPCs. Changing RMSE is
compared over time. (b) Maximum divergence between single-step and multi-
step DDIE methods for varying SNR.

in Fig. 6(b), where we take five measurements per block. Nu-
merically searching for the optimal sensing matrix further im-
proves upon WPCs and WDPCs. The advantage that the latter
have over a numerical search is that they are much simpler to
compute for changing SNR. Therefore, searching for the op-
timal solution is reasonable only if improvement in performance
outweighs the increased computational cost. In Fig. 5, we see
that this not the case. For the sake of completeness, we have
also plotted the RMSE performance of Gaussian random pro-
jections (GRPs). We are aware that there is no theoretical frame-
work for a nonadaptive GRP to outperform sensing matrices ex-
ploiting a priori information. This is experimentally validated in
the plots, which show a GRP to be performing the worst. Lastly,
for -based estimation, the conventional imager outperforms
all the sensing matrices. This is to be expected as minimizing
the MSE alone does not give an advantage to compressive mea-
surements over a conventional imager. We need an additional
constraint, which, for our case, turns out to be sparsity. We show
in the next subsection that we can actually beat the conventional
imager performance when we enforce sparsity via a nonlinear
estimation.However, we stress that, as seen in Fig. 5, the qual-
itative performance of WDPCs is visually close to that of the
truth difference image. In fact, from a practical perspective, it
can be used to provide a good input to a tracker.

The multistep DDIE, as defined in (21), forms a closed loop
between the estimate of the scene and the difference image. As
a result, there will be degradation in performance over time. To
grade the performance of the multistep DDIE, we consider a
clairvoyant scenario for estimating the sequence of difference
images. We will refer to this special case as the single-step
DDIE. Assuming we are estimating the difference image of the
scene between and , the single-step DDIE always as-
sumes perfect knowledge of the scene at as follows:

(51)

Obviously, the single-step DDIE is practically infeasible.
However, it does bound the performance of the multistep DDIE
and, as such, allows us to evaluate the efficacy of the multistep
strategy. Fig. 8(a) shows the performance comparison between
the two for 60 time steps for and SNR dB.
Since single-step DDIE assumes perfect knowledge at every
stage, its RMSE as a function of time is nearly constant. The
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Fig. 9. Eigenspectrum computed from the sample correlation matrix of the dif-
ference images generated from the 3500 training set frames from PETS data set
(16 � 16 block size).

RMSE for the multistep DDIE is the same as the single-step
DDIE at . With passing time, however, the performance
of multistep DDIE degrades as the RMSE drifts. However,
as can be seen, the drift is slow, showing that the multistep
DDIE is temporally robust. In Fig. 8(b), we plot the maximum
divergence of the multistep DDIE from the ideal single-step
DDIE for changing the SNR. Maximum divergence is the
maximum value by which the multistep method diverges from
the single-step method over the 60 time steps. The resulting
plot is a line with a small slope indicating that the multistep
DDIE does not diverge significantly for changing the SNR. To
emphasize further empirically the temporal robustness of the
multistep DDIE, we consider a second data set, i.e., the PETS
2007 data set. We use two camera views of the same object
scene from this data set, each with 4001 frames. We use 3500
frames from the first camera view as the training set. We follow
the exact procedure as for the previous data set to compute the
spatiotemporal cross-correlation matrix (Fig. 9 illustrates the
compressibility of difference images from this data set in a
manner similar to the previous data set). To ensure no overlap
between the training and the testing sets, the images from the
remaining 501 frames in the second camera view are used
for the testing set. Fig. 10 shows the performance comparison
between single-step and multistep DDIE for the PETS data set
for 60 time steps. We see that the RMSE is slightly more than
that in Fig. 8(a), but the trend is the same. The reason for a
slight increase in RMSE is that the training and testing data set
are significantly different. In our primary data set, we follow a
data collection strategy where the training is done on the same
object scene that is of interest for target tracking purposes, i.e.,
the camera angle is fixed, but the training and testing data sets
are defined at different nonoverlapping time intervals. The use
of the PETS data set allows us to replicate our results for a
different scenario where the camera must be trained on one
scene and operate on another. Fig. 11 gives an example of an
estimated difference image using the PETS testing data set. The
first image is the truth difference image at the 50th time step of
an image sequence. The corresponding multistep-DDIE-based
estimated difference image using the optimal sensing matrix is
shown in Fig. 11(b) for and SNR dB. The block
size is 8 8. We see the the visual quality of the estimate is not
far from the truth difference image after 50 time steps.

We now look at the performance of the LFGDIE method for
estimating a sequence of difference images. We claimed that the

Fig. 10. PETS data set: Performance comparison between single-step and
multi-step DDIE methods for � � � and SNR � �� dB using WDPC.
Changing RMSE is compared over time.

Fig. 11. PETS data set: Multistep-DDIE-based estimated difference image for
� � � and SNR � �� dB using the optimal sensing matrix. (a) Truth differ-
ence image. (b) Estimated difference image.

LFGDIE will perform better than the multistep DDIE as it is
able to exploit temporal correlation between all time instants.
Fig. 12 shows that this is indeed the case. RMSE performance
has improved compared with Fig. 6(b). As expected, however,
the trends are still the same. The WDPC sensing matrix still out-
performs all other candidate sensing matrices with the exception
of the numerically searched optimal sensing matrix. Until now,
we have considered the block size of 8 8. In Fig. 13, we graph
the RMSE performance as a function of SNR for the 16 16
block size. We see that, for , there is an improvement in
performance over the 8 8 block size. In fact, the performance
we get for the 16 16 block with is similar to the perfor-
mance of the 8 8 block with . Notice that , for
16 16 block size, implies 1350 measurements for the whole
scene, which translates to less than 0.4% measurements in com-
parison with the conventional imager. Thus, we see that, for the
larger block size, we have improved performance with simulta-
neously higher compression ratio. Fig. 14, however, shows that
the amount of improvement in performance we get by going
from block size 8 8 to 16 16 is reduced when we go from
block size 16 16 to 32 32. This happens because any sta-
tionarity that holds for the small block sizes of 8 8 begins
to break for larger block sizes. As a result, the spatial structure
represented by the sample autocorrelation and cross-correlation
matrices obtained from training data does not completely rep-
resent the true correlation. The LFGDIE method also has the
same trends as the multistep DDIE. The -based estimation on
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Fig. 12. RMSE versus SNR plots for the LFGDIE method. Block size is 8 �
8 and� � �.

Fig. 13. RMSE versus SNR performance plots for block size 16� 16, for� �

�.

Fig. 14. Optimal-sensing-matrix based performance comparison between the
three block sizes 8 � 8, 16� 16, and 32� 32 for (a)� � � and (b)� � �.

the other hand does not depend on a stationarity assumption. Its
goal is to find the best estimate based on the measured data that
enforces the sparsity constraint. In the following subsection, we
discuss the performance of -based estimation methods.

B. -Based Difference-Image Estimation

The advantage of using the norm is that we get precise
linear estimation operators, which allow for quick and easy
computation of the estimate of the difference image. The dis-
advantage, however, has to do with the inability to exploit the
sparsity of a difference image. Solving the convex optimization
problem of (43) allows us to overcome this disadvantage.

Here, we consider the PC, DPC, WPC, WDPC, and GRP
sensing matrices. All abbreviations are the same as before.
Gaussian sensing matrices (i.e., GRP) have been suggested in
theory of compressed sensing for measuring data because they
are incoherent with all representation bases. As a result, they
have become nearly universal in applications of compressed
sensing for being able to reconstruct signals of interest without

Fig. 15. Estimated difference image for SNR � �� dB and � � � for
(a) sparsity-enforced difference image, (b) TV method, and (c) BPDN method.

Fig. 16. RMSE versus SNR curves for the 8� 8 blocks and for the TV method.
(a)� � �. (b)� � �. (c)� � ��. (d)� � ��.

prior knowledge of the signal structure. Fig. 15 shows examples
of the estimated difference image for the 8 8 block size, using
the three -based methods discussed in Section IV. Visually,
all three methods are effective, although TV method performs
better than the other two. Both isotropic and nonisotropic TV
regularizers have similar performance. All the results shown
here are for the nonisotropic TV regularizer. In Fig. 16, we plot
the RMSE performance of the TV method as a function of SNR.
The block size is 8 8, and . For ,
all sensing matrices have similar performance. In fact, at low
SNR, all sensing matrices perform better than the conventional
imager. Thus, unlike -based estimation, -based methods
are better able to utilize the concentration of energy into a
few measurements. This is surprisingly true even for the GRP
sensing matrix. At low SNR, there is a higher premium on
the available energy, and as a consequence, a small number of
random measurements perform better than the conventional
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Fig. 17. WDPC-sensing-matrix RMSE versus SNR curves for the three
� -based difference image estimation methods. Block size 8� 8 and � � �.

imager, where the small energy is spread over all the
measurements. For , the curves for different sensing
matrices begin to separate. Yet, the performance of PC and
DPC sensing matrices is similar. This is because the -based
estimation does not directly estimate the difference image but,
instead, jointly estimates the scene at the two time instants. As
a result, we cannot take advantage of the difference image form
that -based estimation afforded us. We see that waterfilling
improves upon both PC and DPC sensing matrices, but due to
the same reason, the performance of WPC and WDPC sensing
matrices is also similar. The WPC and WDPC sensing matrices
give the best RMSE performance.

In Fig. 17, we compare the performance of the three -based
methods by looking at the RMSE versus SNR curves for the
WDPC sensing matrix. Within the three strategies, we see
that the TV method performs better than the sparsity-enforced
difference-image method and BPDN. However, the improve-
ment is small, particularly when compared with the sparsity-en-
forced difference-image method. By minimizing the gradient of
the difference image, the TV method is best able to capture the
changes in intensity across the difference image. On the other
hand, difference images are also sparse; hence, enforcing spar-
sity also gives good results. The BPDN method has a higher
RMSE compared with the other two strategies. This is to be
expected because, although BPDN also minimizes the norm
with respect to a sparsifying basis, it does not directly utilize
the difference image as is done by the regularization term of the
other two methods. Instead, the BPDN method computes the
joint sparse representation of the object scene at the two time
instants. This results in reduced performance. However, as cor-
roborated in Fig. 15, the degradation in performance is small.
Plotting RMSE as a function of shows us that we are able to
beat the performance of the conventional imager. This is illus-
trated in Fig. 18. At low SNR and for smaller measurements, we
see a wide gap in performance between all sensing matrices and
the conventional imager. Note that the conventional imager al-
ways makes measurements. As the number
of measurements increase, the performance of all the sensing
matrices begins to degrade. The rate of this degradation is a
function of SNR. It slows down as SNR increases. When the
SNR is high, there is no advantage to be obtained from better uti-
lizing the energy as there is enough energy for all measurements,
and the conventional imager performs the best. Finally, we note
that sensing matrices using a priori information perform better

Fig. 18. RMSE versus number of measurements per block for 8� 8 blocks and
for the TV method. (a) SNR � ��� dB. (b) SNR � ��� dB. (c) SNR � � dB.
(d) SNR � �� dB.

Fig. 19. Performance comparison between the � -based TV method using 8�
8 and 32 � 32 blocks. (a) � � �.

than GRP. Looking at the RMSE versus SNR performance of
GRP, we see that it has the most error at all SNRs and for any
number of measurements. At the same time, RMSE versus
plots show that the rate at which the GRP performance degrades
is fastest among all sensing matrices. Increasing block size leads
to improved performance for a fewer number of measurements
as a fraction of the total. Unlike the -based method, here, we
do not suffer from the stationarity assumption. In Fig. 19, we
plot the performance of the TV method using the WDPC sensing
matrix for 8 8 and 32 32 block sizes. We see that the rate
of performance degradation is significantly reduced for the 32

32 block sizes. The improved performance is mainly because
the sparsity condition holds better for larger block sizes. If the
block size is very small, then even a sparse image might not be
sparse within that block. However, with increasing block size,
we achieve sparsity and, as a result, get better performance.

This trend of improved performance with increasing block
size augurs well for future practical implementation of our pro-
posed strategies. A practical FSI system with the capability to
handle different sensing matrices could optically measure the
entire scene at very fast speed. An optical system would not face
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the same limitations that we have in terms of simulating mea-
surements due to a large scene.

VI. CONCLUSION

In this paper, we have shown - and -based techniques for
estimating a sequence of difference images from a sequence
of compressive measurements. We have presented qualitative
and quantitative results to attest that both techniques are able
to estimate successfully the difference images within the FSI
paradigm. Each has its advantage. -based techniques give
closed-form expressions for the linear estimation operators,
which are easy to compute. On the other hand, -based
methods exploit the natural sparsity of the difference image.
Within -based techniques, we looked at the multistep DDIE
and LFGDIE methods to reconstruct directly the difference
image from the compressive measurements. For the -based
estimation problem, we looked at three different approaches
to the linear inverse problem and compared their performance.
We showed that the modified TV method performs the best,
although the method that enforced the sparsity condition
performs only slightly worse. Lastly, we showed that WDPC
sensing matrix had the lowest RMSE for both - and -based
methods, although for the latter WPC did equally well. The
performance of all sensing matrices that utilized a priori infor-
mation was better than the nonadaptive GRP sensing matrix. In
fact, from a practical perspective, depending on the SNR and
the number of measurements that can be taken, anyone of them
can be used to provide a decent input to a tracker.
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