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Abstract—With the adoption of arbitrary and increasingly wide-
band signals, the design of modern radar systems continues to
be limited by analog-to-digital converter technology and data
throughput bottlenecks. Meanwhile, compressive sensing (CS)
promises to reduce sampling rates below the Nyquist rate for some
applications by constraining the set of possible signals. In many
practical applications, detailed prior knowledge on the signals of
interest can be learned from training data, existing track infor-
mation, and/or other sources, which can be used to design bet-
ter compressive measurement kernels. In this paper, we use an
information-theoretic approach to optimize CS kernels for time
delay estimation. The measurements are modeled via a Gaussian
mixture model by discretizing the a priori probability distribution
of the time delay. The optimal CS kernel that approximately maxi-
mizes the Shannon mutual information between the measurements
and the time delay is then found by a gradient-based search. Fur-
thermore, we also derive the Bayesian Cramér—-Rao bound (CRB)
for time delay estimation as a function of the CS kernel. In nu-
merical simulations, we compare the performance of the proposed
optimal sensing kernels to random projections and the Bayesian
CRB. Simulation results demonstrate that the proposed technique
for sensing kernel optimization can significantly improve perfor-
mance, which is consistent with the Bayesian CRB versus signal-
to-noise ratio (SNR). Finally, we use the Bayesian CRB expres-
sions and simulation results to make conclusions about the useful-
ness of CS in radar applications. Specifically, we discuss CS SNR
loss versus resolution improvement in SNR- and resolution-limited
scenarios.

Index Terms—Compressive sensing (CS), Cramér-Rao bound
(CRB), Gaussian mixture (GM), minimum mean-square error
(MMSE), mutual information, sensing kernel optimization, time
delay estimation.

I. INTRODUCTION

IME delay estimation is a fundamental issue in many sig-
nal processing applications, such as radar and/or sonar
ranging, radiolocation, geolocation, remote sensing, synchro-

Manuscript received March 15, 2016; revised October 13, 2016 and February
18, 2017; accepted May 2, 2017. Date of publication May 18, 2017; date of
current version June 28, 2017. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Mark Plumbley.
This work was supported in part by the Defense Advanced Research Projects
Agency under Grant #N66001-10-1-4079. (Corresponding author: Nathan A.
Goodman.)

The authors are with the School of Electrical and Computer Engineering,
Advanced Radar Research Center, University of Oklahoma, Norman, OK 73019
USA (e-mail: guyujie@hotmail.com; goodman@ou.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2017.2706187

nization, and other areas (see, for example, [1]-[6], and the
references therein). Moreover, it is a canonical nonlinear esti-
mation problem that can be useful for understanding and demon-
strating fundamental concepts. Waveform bandwidth is an es-
sential factor in determining estimation accuracy. Therefore,
radar systems typically transmit modulated pulses, such as lin-
ear frequency modulation (LFM) waveforms, and then correlate
the echo signal with the known transmit waveform via an im-
plementation of the matched filter. Time delay can be estimated
from observing the matched filter output over time. Because time
delay resolution and estimation accuracy can be improved by
increasing the waveform bandwidth, more wideband signals are
being adopted to improve the performance of imaging and other
tasks.

However, high-rate analog-to-digital (A/D) converters
present significant challenges with respect to required sampling
rate, system cost, and power consumption. Data throughput from
the A/D converter to the processor or storage sub-system can
also be a bottleneck. In most cases, the required high-rate A/D
converters and data handling hardware are costly and have high
power consumption. Because A/D technology can be a signifi-
cant limiting factor, in this paper we compare classical Nyquist
and compressive sampling schemes at a fixed A/D rate. Tradi-
tional correlation-based processing mandates that the waveform
bandwidth cannot exceed the A/D rate, whereas a compressive
approach allows the transmit bandwidth to be increased beyond
the A/D rate. Hence, in this paper, we consider fundamental
advantages and disadvantages regarding the tradeoff between
resolution and signal-to-noise ratio (SNR) loss of Nyquist ver-
sus sub-Nyquist radio frequency (RF) systems.

In contrast to the classical Shannon/Nyquist sampling theory,
compressive sensing (CS) theory [7] states that some signals
can be acquired at sub-Nyquist sampling rates and then recon-
structed with accuracy comparable to Nyquist sampling, given
some additional side information about the signals being re-
constructed. In the case of CS, this side information comprises
knowledge of a signal basis in which all signals of interest have
a sparse representation, which essentially limits the signal to a
low-dimensional manifold in bandlimited signal space. More-
over, in order to solve the resulting ill-conditioned signal recov-
ery problem, an additional constraint requires the measurement
kernels to be incoherent with the signal’s sparse representation
basis [7], [8]. It is now well known that random measurement
kernels, such as Gaussian and Bernoulli kernels, have a high
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probability of meeting this incoherence requirement and can
provide accurate signal recovery when the representation basis
is fixed [9]. Random projections, however, do not exploit any
prior knowledge that may be available regarding the signal(s) of
interest. On the one hand, this attribute makes random projec-
tions robust, applicable to a wide set of applications, and useful
for important and rigorous proofs on CS behavior. On the other
hand, prior signal knowledge is available in many applications
and might improve system performance if properly exploited.
For example, target track information can be used to initialize
prior distributions on target properties including estimated tar-
get range, which then provides the possibility of optimizing CS
kernels according to an appropriate sensing performance metric.

In contrast to the random sensing kernels commonly adopted
in CS theory and applications [7]-[11], in this paper we de-
velop and apply an information-theoretic metric [12]-[15] to
design an optimized sensing kernel for time delay estimation
in radar applications. Within the framework of information the-
ory, time delay can be modeled as a random variable with some
prior probability density function (pdf). By discretizing the a
priori distribution of the target time delay, the measurement
pdf can be approximated by a Gaussian mixture (GM) given a
linear CS measurement model. The GM distributions describe
the time delay and, subsequently, the accuracy of the pdf of the
radar measurements can be improved by increasing the num-
ber of components in the mixture. The optimization formula-
tion then calls for maximizing the Shannon mutual informa-
tion between the compressive measurements and the target time
delay.

In order to optimize the sensing kernel, we derive the ap-
proximate gradient of mutual information with respect to the
sensing matrix based on a first-order Taylor series expansion.
Although this approach is similar to the one we used to optimize
CS kernels for radar target profiling and recognition application
[16], [17], wall reflections mitigation in urban radar imaging
[18], [19] and direction-of-arrival estimation in massive multi-
ple input multiple output (MIMO) systems [20], the time delay
estimation problem treated in this paper is more fundamen-
tal. The time delay estimation problem clearly demonstrates the
fundamental tradeoff in compressive radar systems between res-
olution and SNR loss, and helps to explain the results obtained
in [16]-[20]. Starting from the Cramér—Rao bound (CRB) under
Nyquist sampling [21], [22], we then derive the CRB under com-
pressive sampling and extend the applications of CRB analysis
on parameter estimation.

Compared with CRB analyses in the framework of random
compressive sensing [23]-[26], the CRB analyses presented in
this paper clearly state the resolution/SNR loss tradeoft inherent
in compressive radar systems. The minimum mean-square error
(MMSE) estimator, which has a closed form for the GM approx-
imation to the prior distribution, is used to compare performance
of different compression strategies. The relationship between
mutual information and MMSE, which has been shown in [27],
validates the use of mutual information as an optimization met-
ric. We also derive a Bayesian CRB on the time delay estimate
that accounts for both prior information and the compressive
measurement structure. We note that the Ziv—Zakai bound
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(ZZB) is also a Bayesian bound that can be used to evaluate the
performance of time delay estimation (see, for example, [4],
and references therein). The ZZB is typically applicable to es-
timation of uniformly-distributed scalar random variables [28].
However, the Bellini—Tartara form [29] of the ZZB can be used
to describe estimation performance for an arbitrarily-distributed
continuous vector random variable [30]. In this paper, with the
connection between mutual information and MMSE, we have
used the Bayesian CRB to judge estimator performance.

Generally speaking, radar CS suffers an SNR loss roughly
proportional to the compression factor. This SNR loss can man-
ifest as either noise folding or as a loss in signal energy [31]-
[33], but the implication is the same - using radar CS for de-
tection applications has some potential difficulties. On the other
hand, radar CS can sometimes enable improved resolution with-
out the typically associated increases in system size, weight,
and power (SWAP). For example, in the application proposed
here, we consider compressive sampling from the perspective
of increased bandwidth of the transmit waveform without the
associated increase in A/D sample rate. Through compressive
sampling, we can capture the additional information inherent
in a high-bandwidth waveform without the corresponding in-
crease in system SWAP and cost that would result from a faster
A/D converter. In high-SNR parameter estimation scenarios,
this additional resolution can be a benefit that outweighs the
inherent SNR loss. Our simulation results are consistent with
these observations while also showing performance improve-
ment of optimized sensing kernels in comparison to random
sensing kernels.

This paper explores a fundamental tradeoff enabled by com-
pressive sensing. In contrast to traditional systems where sam-
pling intervals are linked to signal bandwidth, CS enables
the link between these factors to be broken. In other words,
native resolution can be increased without a corresponding
increase in sampling rate. We demonstrate a potentially trans-
formative consequence of breaking this link by showing, via
the CRB, that enhanced resolution outweighs the disadvan-
tage of SNR loss inherent in compressive RF sampling, when
the system is operating in the high-SNR asymptotic regime.
We demonstrate through CRB analysis and simulation that a
system employing high-bandwidth waveforms that necessitate
compressive sampling can outperform a traditional system with
waveform bandwidth matched to the sampling rate. As addi-
tional contributions, we provide Bayesian CRB derivations for
CS with optimized kernels and demonstrate how the GM-based
measurement kernel optimization can be applied to a continuous
parameter estimation problem.

The fundamental tradeoffs and capabilities evaluated in this
paper are only part of the analysis required to arrive at a good
system design. We hold A/D sampling rate constant in our com-
parisons because A/D technology can be a significant limiting
factor in the bandwidth of RF systems. For example, in a re-
cent survey of high-performance A/D technology, we found
that in order to increase sampling rate by a factor of 10, the A/D
converter would consume about 7.5 times more power and in-
crease A/D cost by a factor of approximately 35. Meanwhile, the
additional high-rate digital-to-analog (D/A) converter required
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to implement a compressive approach did not have nearly the
same cost or power implications. Clearly these system tradeofts
depend on specific rates and the current state of technology,
so they must be evaluated for the desired sampling rates and
compression ratios of specific applications. For the same signal
bandwidth, full-rate sampling will always outperform compres-
sive sampling, but may be prohibitive in terms of system cost
and power consumption. Therefore, we propose that in some
situations, the performance and systems analysis will favor the
compressive approach.

The rest of the paper is organized as follows. In Section II,
we summarize the radar signal model and associated MMSE
estimator based on the GM assumption. In Section III, we sum-
marize CS kernel optimization for both fixed and random signal
amplitudes, and in Section IV we present the corresponding
Bayesian CRBs on time delay estimation. In Section V, we ana-
lyze different sensing kernels by comparing pairwise distances,
average output SNR, and approximate distributions of squared
error. We then compare the mean-square error (MSE) perfor-
mance of optimized sensing kernels against the corresponding
Bayesian CRB and to random sensing kernels. We make our
conclusions in Section VI.

II. SIGNAL MODEL

In radar signal processing, the received echo signal r(¢) can
be modeled in complex baseband notation as

r(t) = ayp(t — 7) + n(t), (1)

where « is the complex amplitude coefficient of the received
signal, ¢ (¢ — 7) is the radar waveform with unknown time delay
7, and n(t) is complex additive Gaussian noise. The delayed
signal can be sparsely represented by defining a waveform basis
parameterized by the time delay. According to CS theory, this
sparse signal can be recovered at sampling rates much lower than
the standard Nyquist rate with accuracy at least as good as that
provided by the standard Nyquist rate. (Indeed, our contention
is that under certain circumstances, this reconstruction can be
significantly better than for Nyquist-sampled systems operating
at the same sampling rate.) Hence, we need only to measure
and encode M linear projections of the received signal (t)
onto a set of measurement kernels {¢,, (t),m =1,--- , M},
where M is much less than the number of samples that would
be collected at the Nyquist rate. The m-th measurement will
be a projection of the noisy received signal r(¢) onto the m-th
measurement kernel ¢,, () as

Ym = (D (t)’ T(t)>

= ¢m (t)r(t) dt

0
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Fig. 1. Compressive sensing radar receiver, where the solid lines denote analog
signals and dashed lines denote digital signals.

where (-, -) denotes the inner product, 7" is the maximum du-
ration of the received echo signal, L = T'/A, and the integrals
have been approximated by dividing the maximum duration 7'
into discrete intervals of width A. If the interval A is much
smaller than the reciprocal of the bandwidths of both the mea-
surement kernel and the radar waveform, then the signals do not
vary significantly within a discrete interval and the approxima-
tion will be accurate.

Deﬁning d)m = [(bm[l]a (bm 2]; ] (bm [L]]’ 1/)(7—) =

[W[1; 7], ¥[2;7], (L 7)Y, and no=[n[1],n[2],- -,
n[L]]T, yields

y:i’r:d‘?(m/)(T)Jrn), 3)
where y = [y1, 42, ,yan]* € CM is the measurement vec-

tor, ® =[] , ¢y, ,(bL]T € CM*L s the sensing matrix
(a discrete representation of the M analog sensing kernels) with
m-th row comprising the measurement kernel ¢,,, ¥ (1) € CF
is the discrete-time representation of the radar waveform de-
layed by 7, and n ~ CN(0, C,,,, ) is zero-mean complex Gaus-
sian noise independent of time delay 7. Here, [-]T denotes the
transpose. We are careful to note here that although approxi-
mated in discrete time, the models of the received signal, noise,
and sensing kernels are representations of analog signals as seen
in the compressive receiver block diagram of Fig. 1. In Fig. 1,
we see the analog multiplication of the noisy received wave-
form with the sensing kernels, an analog integration component
to complete the projection of the noisy waveform onto each
measurement kernel, and finally A/D conversion to obtain the
measurement vector y. Therefore, discrete-time representations
must be at a rate that is at least as high as the Nyquist rate for
the signal at the output of the analog multiplier. This output
has higher bandwidth than the noisy input waveform due to the
convolution of the frequency spectra of (¢) and ¢,, (¢). Only
the elements in the measurement vector y are actually discrete
samples.

The probability distribution of the time delay 7 is assumed to
be known a priori. Among other scenarios, this assumption is
reasonable for radar tracking where a current estimate of radar
parameters must be updated with a new measurement. Our goal
is to design the sensing matrix ® (namely, the corresponding
analog compressive kernels ¢,,, (¢)) to estimate the time delay 7
as accurately as possible from the measurement y. Defining the
transmit waveform bandwidth as B, the underlying dimension-
ality of the received signal 7(¢) is N = BT, and the compressive
sampler should have M < N.
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Fig. 2.

Discretization of the pdf of time delay.

The pdf of the observation vector y can be expressed as

1) = [ Hunsn)ar= Y fylnf s @
ke
where the integral is over the support of the pdf of 7 and the
cardinality of the set C = {1,2,--- , K} is |K| = K. Here, K is
the number of bins resulting from dividing the support of f(7)
into bins of width A7. This discrete approximation of f(7),
depicted in Fig. 2, results in

fy) = Zpkf(’ym)» &)

kek

where p;, = f(7;)A7. When the realization of the time delay is
Tk, the corresponding measurement is

Y = y‘T:T]\. = @(atﬂ(m) =+ TL)
— a®(r) + Bn. )

When the signal amplitude « is fixed, then the observation vec-
tor in (6) is complex Gaussian with a mean of %) = a®(7;)
and covariance matrix C,,, = ®C,,,,®". Therefore, the con-
ditional pdf is

R Ty Ry B}
T | Cyy | 7

fylm) = ©)
where [-]% denotes the Hermitian transpose. When the sig-
nal amplitude « is zero-mean, complex normal according
to o~ CN(0,02), then the observation vector is a zero-
mean complex Gaussian random vector with covariance matrix
clh) = ®(o24p(1)¥" (71) + Crn)@". Therefore, the con-
ditional pdf is

-1
foln) = — e ol v
oM ‘C;J‘

Hence, under either amplitude model, the pdf of y is a
weighted sum of K Gaussian distributions, which forms a Gaus-
sian mixture distribution. In the fixed-amplitude case, the set
Sk = {pr, g™, Cyy; k € K} defines the GM parameters of
the measurement signal y. In the random-amplitude case, the
set Sp = {pk, 0, C(yky); ke IC} defines the GM parameters of
the measurement signal y. If we allow the bin size A7 of the
approximation to go to zero, then the approximated measure-
ment vector density approaches the true density at the expense
of an infinite number of components in the mixture.

The MMSE estimator is commonly used for estimating ran-
dom parameters. Although there is not a closed-form MMSE
estimator for the full pdf in (4), the MMSE estimate can be
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numerically computed for the approximated pdf. The MMSE
estimate is the posterior expected value of the parameter. There-
fore, the MMSE estimate of time delay is

F=E, {7} = / T (rly) dr, ©

where E{-} denotes statistical expectation. Using the same
discretized pdf approximation as above, an approximate MMSE
estimate of time delay is

TR Z e f (i |y) AT

ke

e )
-4 ,;C W)

1
= m ;CPkaf(yhk)’

where Bayes’ theorem was used. Obviously, the MMSE estimate
depends on the measured data, which depend on the sensing
kernel ®. In contrast to randomly generated sensing kernels in
the CS literature, the sensing kernel ® now can be optimized
based on the a priori knowledge of the time delay.

The discrete-pdf approximation to the MMSE estimate will
be valid as long as the bin width is much smaller than the
MSE of the non-approximated MMSE estimator. In other words,
the quantization error introduced by the approximation should
be small compared to the error due to measurement noise. As
SNR increases, MSE is reduced, implying that finer bins are
required in order to prevent quantization error from affecting
the outcome. Another interpretation is that there must be enough
bins such that the posterior pdf of 7 can be smoothly represented.
As SNR increases, the posterior pdf will become increasingly
narrow and sharp, and the discrete bins must be much narrower
than the variations in this pdf. Consequently, it is necessary to
use more bins at high SNR so that the discrete approximation
does not adversely affect either the sensing kernel optimization
(via an inaccurate GM approximation) or the MMSE estimation
(via an insufficiently sampled posterior pdf).

(10)

III. COMPRESSIVE SENSING KERNEL OPTIMIZATION

In this section, we adopt the mutual information maximization
criterion to optimize the sensing kernel for time delay estima-
tion in two different amplitude cases. Considering that the op-
timization variable ® is a high-dimensional matrix, we prefer
a gradient-based search method as we did in [17], which re-
quires the gradient of the Shannon mutual information I(y; )
between the time delay 7 and the measurement y with respect
to the sensing matrix ®

Val(y;7) = Vah(y) — Vah(y|7), (1D

where h(y) = —E{log[f(y)]} denotes the differential entropy
of the measurement y, and h(y|7) = —E{log|[f(y|7)] } denotes
the conditional differential entropy of the measurement y con-
ditioned on the time delay 7, respectively. Here, Vg {-} de-
notes the gradient with respective to ®. Although there is not
a closed-form expression for our information metric for most
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pdfs of interest in practical radar applications, the previous dis-
cretization of the pdf of time delay allows an approximate path
forward. By performing a first-order Taylor series expansion of
the logarithm of the GM distribution, the differential entropy is
approximated as [17]

h(y) ~ —log [Z P f (o Iml : (12)
kek
where y, = E{y} is the Taylor series expansion point.
A. Fixed Amplitude Case
In the fixed-amplitude case, we have
Ty =yolm)
1 2 [ TaH -1 &[4
_ —lal? [p—p(ri)] " CLL® [—vp(7i)] 13
7"M|ny|e S

where ¥ = >, p¥(7i) & [ f(7)(7) d7 is the mean of
1 (7) over the prior pdf of 7, and yo = oz'IM,b is the mean of
the measurement vector y. We note that when the time delay
T is given, the only random contribution is due to noise, which
leads to h(y|7T) = h(®n). Hence, the gradient of the mutual
information with respect to the sensing matrix is approximated
as Vg I(y; 7) (14), shown at the bottom of this page, where the
derivation is

— H _ —
o{[¥ —w(r)] e Cyy @[ - v(n)] |
- - - H
=C, @[ — (7)) [¢ — ¥(7)]
_ - - H -
V2 [Y —v(n)] [¥ — v(n)] tI>HCy?1!tI>C,m.
In a special case where the complex additive Gaussian noise
n in (3) is white (namely, C,,, = 02I) and the sensing kernel

® has orthonormal rows (namely, PPl = I), the above ap-
proximate gradient (14) can be simplified as (15), shown at the

bottom of this page, where I denotes the identity matrix and ‘ ‘
denotes the input SNR of the target signal.

B. Random Amplitude Case

In the random-amplitude case, we have the approximate gra-
dient of the differential entropy of the measurement with respect

4529

to the sensing matrix [16], [17], [20]
Vs h(y) ~
-1 -1
Siexpt|Chy|  [CU] @ (o29(n)v" (7) + Cun)

]
k
> ke Pr ‘Cg;y) ‘

(16)

because

1

fly=1y,=0|r;) = W
(i yy‘

7)

When the random amplitude is modeled as o ~ CA(0,02),
the probability distribution of the measurement y conditioned
on time delay 7 is

1 41 C-
flylr) = e ¥ Cwr? (18)
M [Cyyr |
where Cyy|, = ®(024(7)9" () + Cpypn) @' Hence, the dif-
ferential entropy of the measurement y conditioned on the time
delay 7 is

Q

hylr) ~ — / £y, 7)logf (o) dy dr

_ / logf (yolr) f(r) dr

Q

Z prlog ‘C;’“y)‘ + Mlogm, (19)

ke

where the first approximation is based on a first-order Taylor
series expansion of log f(y|7) around the mean value y, = 0.
By taking the gradient of the resulting approximation in (19)
with respect to the sensing matrix ®, we have

Zpk[

ke

Vah(ylr) ~ ] @ (02 99" (1) + Cn).

(20)

Substituting (16) and (20) into (11), we can obtain the ap-
proximate gradient of the mutual information with respect to the
sensing matrix directly. If we further assume that the complex
additive Gaussian noise is white (C,,,, = G%I), the approximate

ol [#-w(r0)] " @ Oy [b-pi)]

Ve l(y:7) e Va{ [ - ¢(m)]" 2" Cyl@[v - ¥(7)] } (14)
T) = H |
m Zk:elcpkei‘a‘z [12’*¢(Tk )] alcy Lo [{bf,‘p(m)]
‘a "j [1;71/)(7’“)]}1‘1’1{‘1’ [{Pﬂ/)(ﬂc)] P — v H
Vq>](y;7-) Zke/cpke : [dj 'Lp(Tk)} ["/" ’l/J(Tk)] ’ )

Yhex Dre °n
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gradient can be simplified as

Ve l(y;7) ~
AN N7 —1
Cy| [Cw o2 ;
Zkeicpk o o2 P %"ﬂ(Tk)"/’ (te) +1
k -1
X om |2
ke k 0'31

Cg/ky) o 03 H
“Yn |2 e (Zemwte 1), ey
ke

n n

cl)
where Z¢-
@(§%¢(ka)¢ () +T)®".

With the approximate gradient of the mutual information with
respect to the sensing kernel ((15) in fixed amplitude case or (21)
in random amplitude case), we can optimize the compressive
sensing kernel by using the gradient-based optimization method.
The detailed optimization process and convergence criterion can
be found in [17]. From (15) and (21), we can see that the com-
putational complexity of calculating the gradient is O(K M L?)
for both the fixed-amplitude case and the random-amplitude
case because M < L. Hence, the overall computational com-
plexity of the proposed information-theoretic-based compres-
sive sensing kernel optimization for time delay estimation is
O(GK M L?), where G denotes the number of iterations.

denotes the input SNR of the target signal, and

IV. BAYESIAN CRAMER-RAO BOUND

In this section, we derive the Bayesian CRB for time de-
lay estimation under compressive sensing, which will be used
to compare and verify time delay estimation performance for
both optimized and random measurement kernels. When the
probability distribution of time delay is a known prior, we can
calculate the Bayesian CRB. The Bayesian version of the Fisher
information Jp comprises two parts [21]

Jg =Jp + Jp, (22)
where Jp and Jp denote the information gained from the data
and the information due to the prior knowledge, respectively.

A. Fixed Amplitude Case

In the fixed-amplitude case, the probability distribution of the
measurement y conditioned on time delay 7 is

1 — I:y—ry{)'(/;(rr):lﬂc;ly [y—oﬂI)’IIJ(T):I . (23)

fylr) = ¢
M ‘ny|

Differentiating the log-likelihood function once produces

dlogf (ylr) _ . 9" (7)

dr dr

+a [y - O‘(PQ/}(T)}H yy

®"C,, [y — a®y(r)]

d¢( )
dr

(24)
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where (-)* denotes the complex conjugate. Note that the re-
quired regularity condition is satisfied

Ey|- {W} =0, (25)
because By, {y} = a®(7). The second derivative is
d210§£ gylr) _ o dQZJ;(T) $1C, ! [y — adip(r)]
+afy - a@qp(T)]HC;;@dQﬂT)
» ‘Qduf g g

Taking the expected value y1elds the information gamed from
the data according to

d*lo T
7o =By { - 5 (),
which is the expected value of the standard Fisher information
d*logf(y|7)
Jp (1) = Eyr {_ dr2
d d

d

for a specific time delay 7. On the other hand, the Fisher infor-
mation due strictly to prior knowledge is

sy =, (L)

dr?
where the prior pdf of the time delay parameter is f, (7). The
Fisher information due to prior information is zero for the uni-
form distribution, and equal to the reciprocal of variance for the
normal distribution. The corresponding Bayesian CRB is

1
¥ Slomn il }+JP'
(30)
With the assumption of white noise (C,,,, = afLI) and row or-

thonormalization of the sensing kernel ('IHI)H =1), Jp in (27)
can be simplified as [34]

(29)

BCRB = J;' =
2|a?E, {d¢

2 H
7 —aloly {d (29 ()]" d[4(7) } G
o2 dr dr
and the corresponding Bayesian CRB in (30) is simplified as
1
BCRB = J;' = . (32)
2|a\2 jol {d[%ﬁiﬂ]” dliﬁ(f)] } +Jp

In many cases, the expectation of Jr (7) over 7, is not analyt-
ically tractable. In this case, one approach sometimes used is the
so-called expected CRB (ECRB) [22] by taking the expectation

of the conditional CRB as
ECRB =E, {J;' (1)}, (33)

which can be evaluated using a Monte Carlo simulation.
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The expression in (32) is interesting to interpret. First, the

Bayesian CRB depends on the input SNR through the term ‘ ‘
For very high input SNR, the first denominator term will dom-
inate, and the Bayesian CRB will decrease linearly with input
SNR. This behavior is typical of nonlinear parameter estimation
problems operating in the asymptotic region. Second, the term
inside the curly braces is essentially the square of the /5 norm
of the derivative of the measurements with respect to the delay
parameter, averaged over the prior pdf of the parameter. This
rate of change evaluated as a derivative will generally increase
linearly with increased waveform and/or kernel bandwidth. Be-
cause the Bayesian CRB depends on the inner product of these
derivatives, performance will generally vary with the square of
the signal bandwidth. Specific values of the derivative terms will
depend on the specific interactions of the measurement kernel
with the waveform, and on the specific prior pdf of 7. However,
the general behavior is consistent with the traditional CRB for
time delay estimation - in the asymptotic region, performance
improves linearly with SNR and quadratically with signal band-
width. In the compressive case, the measurement kernel can be
used to impress or encode 7-dependent fluctuations on the mea-
surements that vary more rapidly with 7 than can be observed
due to the waveform alone. Of course, these fluctuations must be
unique over all possible values of 7 in order for 7 to be uniquely
recoverable. Random measurement kernels are likely to provide
this unique mapping from 7 to measurement, but optimized ker-
nels could introduce unique encodings that are enhanced for the
most likely 7 values (based on the prior pdf).

On the other hand, the square of the ¢, norm of these deriva-
tives will also depend on the dimensionality of the measurement
kernel ®. As more samples are taken (more rows in ®), more
fluctuation points can be measured and will contribute to the
inner product inside the curly braces. Viewed another way, the
number of measurements controls the number of rows in P,
which then controls the number of terms in the inner product.
Fewer measurements mean that less energy is collected, which
shows up as an SNR loss, as expected in RF compressive sens-
ing [32], [33], [35]. So in general, there is a tradeoff between
SNR loss and resolution enhancement. For fixed sample rate,
increased waveform bandwidth will improve the Bayesian CRB
by a factor of the square of the bandwidth increase, but will
linearly degrade the Bayesian CRB due to SNR loss. The SNR
loss, however, degrades approximately linearly with the com-
pression ratio. These conclusions apply when the input SNR
is sufficient to operate in the high-performing asymptotic re-
gion where estimation performance can be considered to be
resolution limited rather than SNR limited. In this asymptotic
scenario, it may be beneficial to accept some SNR loss due to
compression in exchange for improved native resolution of the
measurements.

B. Random Amplitude Case

From (18), the log-likelihood function conditioned on the
time delay 7 is

Hcl

logf(y|r) = vyl Y —log |Cyy, | — Mlogm, (34)
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where the third term is a constant independent of 7. Hence, we
have the first derivative as

dlogf(y|7)

dr

dC
_ L HeL YyIT ~—1
-y ny\T dr yylr Y
() dw ( )

2 | H H-1 H-1

—o'u|: (r)® ny‘T = P ny‘Tq)'l/J(T),
(35)

where £y — o2 @ (Ll (1) 4 op(r )dd’ )@ Here,

Tr[ - ] denotes the trace of a matrix. Note that the required regu-

larity condition
dlog f(y|7)
Eyr { =0,

dr (36)

is satisfied because

dC

H~—1 YyIT ~—1
Ey{ ny\T dr nyfy}
=0, 2Ty [C !

(C“ﬁi”

Hr) +p(n D)

dr

W) W g g

dr yy|7

=02 PH( ne'c,, @ w)}.

(37)
The second derivative is

d210§f(?/|7)_ Ho-1 ’C

YYIT ~—1
dr2 yylr

dr2 yylrY

dny\T c!

vt dr yylrY

72yHCI dCyyir

yylr dr

_o? dQ‘g 2( 7)

dy(7)
dr

dyp" (1)
H 1 H 1
diC —Telcy),

yylr

PY(1) + 2
4 (7)
® dr?

dCyy|, dap(T)
H He-1 yy| 1
—yi(n)® Cyyir dr Cyyir ® dr

d"bH() N fom. dny\T 1
T dr 2 Cyyir dr ny\fq)d’(T)’

x P

( )@HC 1

yylr

(38)

2
4" Coyyir

p H
C :qu,(r12¢(27)¢ﬂ(7>+2dw<7> ayt(r) |

where 7

1/;(7-)'] vl ( )><I>H Taking the expected value yields
Jp =E-{Jp(7)}

dc;!
:_QJgET{m[w(T)@ dﬁ”@‘hfif)]}, (39)
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because the Fisher information for a specific time delay 7 is

_ d’logf(y|7) }

JF (T) = Ey\T { d7'2

dyp(7)
® dr |’
(40)

dCyyr
:203%[¢H(7)<1>Hc—1 LA

vylr gr yy|r

where R[ - ] denotes the real part of a complex number. With the
priori Fisher information Jp in (29), the corresponding Bayesian
CRB is

BCRB = J'
B 1
N ac:}! '
—202E, {8% {[M(T)}H;’;T ‘”‘I’;i””} } +Jp
(41)

For the random-amplitude case, the signal information is ex-
pressed in the covariance matrix of the measurement pdf rather
than the mean; therefore, the Bayesian CRB in (41) is different
from the one in (30).

V. SIMULATION

In this section, we compare time delay estimation perfor-
mance of the proposed optimal sensing kernel with that of
the Gaussian random sensing kernel. We also study the be-
havior of compressive time delay estimation with respect to
derived bounds and demonstrate the potentially favorable reso-
lution/SNR loss tradeoff enabled by CS. In our simulations, the
A/D converter is assumed to be operating at a fixed sampling rate
of B = 1 MHz. The radar transmitter transmits an LFM wave-
form with bandwidth CR x B MHz, where CR is the com-
pression ratio of the compressive sensing radar receiver. When
the compression ratio is five (C' R = 5), the transmit waveform
bandwidth is 5 x 1 MHz = 5 MHz. When the compression ratio
is CR = 10, the transmit waveform bandwidth is 10 x 1 MHz
= 10 MHz. The CR is the important factor, whether the sam-
pling rate or signal bandwidth is held fixed. We prefer to hold
sample rate fixed in order to focus the perspective on perfor-
mance gains achievable by generated waveforms with higher
bandwidths than the A/D converter is capable of acquiring at
Nyquist. Meanwhile, a 1-MHz waveform is also adopted for
the baseline Nyquist result, such that the transmit waveform
bandwidth is matched to the receiver sampling rate. Therefore,
the Nyquist reference for these simulations is a constant sam-
pling rate of 1 MHz. We also note that although we use an LFM
waveform in these simulations for its relative ease in varying the
waveform bandwidth as needed for comparisons, the behavior
and main conclusions apply to other waveforms as well.

We define the relationship between signal amplitude and our
input SNR metric according to « = v/SNR X o, in the fixed-
amplitude case and o ~ CN(0,SNR x ¢2) in the random-
amplitude case. The time delay 7 is assumed to be between
0 s and 8 ps. We uniformly discretize the pdf of time delay
into K = 1,000 bins for compressive sensing kernel optimiza-
tion regardless of SNR. Namely, the number of components
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in the Gaussian mixture in (5) is 1,000. The optimized kernel
must be re-calculated for every value of compression ratio and
input SNR; however, description of the detailed gradient-based
compressive sensing kernel optimization process and the corre-
sponding convergence criterion can be found in [17]. It is worth
noting that when the exact input SNR is not available in practical
applications for kernel optimization, we prefer to use CS kernels
optimized at high SNR in the asymptotic performance region
rather than those optimized at low SNR of threshold region.
Our studies have indicated that, within the asymptotic region,
performance is not particularly sensitive to mismatched SNR
during the kernel optimization.

In Fig. 3, we compare the structure of the initial Gaussian
random compressive sensing kernels (C'R = 5) with the opti-
mized sensing kernels, where the optimized sensing kernels are
optimized with 7 ~ N(4, (4)?) at SNR = 30 dB. The opti-
mized sensing kernels are more focused in both the time and
frequency domains and have strong components at both ends of
their frequency spectra, which aids resolution performance. In
the MSE performance comparison of different sensing kernels,
Ny = 1,000 Monte-Carlo trials are performed for each data
point (SNR). The MSE is defined as

Ny e

Z (72(1 - TQ)Q ’

q=1

(42)

where 7, and 7, are the MMSE estimate and true time delay,
respectively, for the gth Monte-Carlo trial.

Before comparing the MSE performance of different cases,
we first analyze pairwise distances, average output SNR, and the
approximate distributions of squared error for different sensing
kernels. In Fig. 4, we present the pairwise signal distance maps
for different sensing kernels, where the pairwise distance be-
tween compressed signals obtained for time delays 7; and 7 is
defined as

d(r1,7) £ [|® (Y(11) — ()|, V7, 7.

Here, || - || denotes the ¢5-norm of a vector. The distance map for
the random sensing kernel is generated by averaging the pair-
wise distances over many realizations of the random sensing
kernel; therefore, for the random kernel case we show expected
distances, i.e., E{d(71,72)}. The distances should be as large
as possible, implying that different values of 7 will map to sig-
nificantly different signal vectors, thus enabling resolution and
accurate estimation. The main diagonals of the distance maps
show the distance between signal vectors for the same time de-
lay, which is zero. As the time delay separation increases, the
distance between resulting signal vectors generally increases,
which enables resolution and better estimation accuracy. The
result in Fig. 4(a) shows that Nyquist sampling has the worst
resolution, as indicated by the broadest null along the diagonal.
The compressive cases enable more transmit bandwidth, so they
have better native resolution and narrower diagonals than the
Nyquist case. This is the fundamental resolution improvement
we are seeking to achieve through a compressive solution that
doesn’t require corresponding A/D hardware upgrades. When
range sidelobes cause two significantly different values of 7 to

(43)
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Fig. 3. Compressive sensing kernels (C'R = 5) comparison. (a) Time response of the random (Gaussian) sensing kernels; (b) Time response of the optimized

sensing kernels, where the sensing kernels are optimized with 7 ~ A (%, (;7)2) at SNR = 30 dB; (c) Frequency response of the random sensing kernels; (d)

Frequency response of the optimized sensing kernels.
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Fig.4. Pairwise distances comparison of different sensing kernels. (a) Nyquist sensing kernel with bandwidth 1 MHz; (b) Random sensing kernels with bandwidth
5 MHz; (c) Optimal sensing kernel with bandwidth 5 MHz, where the sensing kernels are optimized with 7 ~ N(%, (%)2) in the fixed-amplitude case at SNR
= 30dB.
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Fig. 5.
The approximate pdf of squared error of time delay estimate at SNR = 30 dB.

induce similar signal vectors, we see localized drops in the dis-
tance maps. These are clearly seen in the map for the optimized
kernel, but they are also present for any one realization of a
random sensing kernel (in fact, they are much worse for a sin-
gle random measurement kernel). When averaged over multiple
random kernels, these randomly located range sidelobes average
out to a constant level as seen in Fig. 4(b). Finally, we point out
that the distance map for the optimized kernel depends on SNR
because the optimized kernel design depends on SNR.

Finally, in comparing the distance map for the optimized ker-
nel versus the averaged distance map for random kernels, we
see that they have approximately the same resolution (same
diagonal width), but the optimized kernel produces larger dis-
tances (and, hence, better resolution) away from the diagonal,
especially near the center of the map where the prior pdf of 7
indicates more likely values. At the tails of the delay parameter’s
prior distribution, corresponding to the corners of the distance
map, the optimized kernel allows the distances to decrease be-
cause these values are less likely to occur. We can interpret this
behavior as an optimal projection of observed waveforms into
compressed space according to input SNR and the parameter’s
prior pdf. Overall, this distance behavior produces better MSE
results, as we will show shortly. Although the random kernel has
good resolution, the high sidelobes of any one kernel realization
degrade its average performance.

In Fig. 5(a), we compare the average output SNR of differ-
ent sensing kernels compared to the input SNR for the fixed-
amplitude case, where the average output SNR is calculated as

B{lla®y(r)|*}

(44)
E{|®n|”}

Output SNR £
This metric evaluates SNR loss due to compressive sampling.
It can be seen from the figure that there is no SNR loss for
Nyquist sampling (the output SNR equals the input SNR for
all input values). As the theoretical analysis predicts, there is a
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Performance comparison of different sensing kernels with fixed amplitude v and normal distributed time delay 7. (a) Output SNR versus input SNR; (b)

fixed 7 dB (=101log;( 5) SNR loss for random sensing kernels
with (CR = 5), and a fixed 10 dB (= 10log;, 10) SNR loss for
CR = 10. In other words, random kernels have an average SNR
loss equal to the compression ratio. The optimized sensing ker-
nel has different behavior. At low input SNR (e.g., below 0 dB),
the optimized kernel clearly attempts to retain SNR, and the SNR
loss compared to Nyquist sampling is minimal. At high input
SNR (e.g., above 20 dB), the optimized kernel admits a compro-
mise in SNR loss in order to improve resolution and discriminat-
ing capability across different values of 7. We see this behavior
change from an input SNR of about 0 dB to an input SNR of
about 20 dB. This interval of SNR € [0 dB, 20 dB] is the so-
called threshold region typical of nonlinear estimation problems.
Below the threshold region, the estimation problem is noise lim-
ited and large errors can result. Above the threshold region is
the asymptotic region where the system is resolution limited,
and a good compressive solution may improve performance.

Although the average output SNR of the optimized CS kernels
is worse than the output SNR of the Nyquist case, the optimized
CS case will still have smaller estimation MSE in the asymptotic
region, as seen in Fig. 5(a). In Fig. 5(b), the approximate pdf
of squared estimation error (numerically estimated over 1,000
trials) at an input SNR of 30 dB shows that the compressive sys-
tem has better estimation performance. These distributions show
that the average error will clearly be lower for the compressive
systems, and the worst-case errors occur infrequently. At low in-
put SNR (not shown), however, these conclusions do not hold,
as the system is noise limited and SNR loss due to compres-
sion is detrimental to performance. The following MSE results
demonstrate this behavior.

A. MSE Results for Fixed Amplitude

In the fixed-amplitude case, we consider two different dis-
tributions on time delay 7: a uniform distribution U [O, %]
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Fig.6. MSE performance comparison and the corresponding CRBs, where the amplitude « is fixed. (a) The distribution of time delay 7 is uniform 7 ~ U [0, %} ;

(b) The distribution of time delay 7 is normal 7 ~ N (% (%)2 ) .

and a normal distribution N'(+%, (+)?). From Fig. 6, it is ap-
parent that the proposed optimal sensing kernel outperforms
the random sensing kernels, especially at intermediate and high
input SNR. The impact of SNR loss due to compression is
observed in the fact that the Nyquist kernel achieves the asymp-
totic region at lower input SNR than required by the compressive
kernels. Because SNR is lost in the compression, additional in-
put SNR is required in order to make up for this loss and to
reach the desired asymptotic performance region. Note that for
a uniform prior pdf, the prior is uninformative with Jp =0,
which leads the Bayesian CRB not to converge to a constant
level at low SNR. For the normal prior, the Bayesian CRB
converges to a constant level at low SNR with the aid of
prior information Jp = U% = B2,

Fig. 6 shows that the compressive schemes require more in-
put SNR than Nyquist sampling in order to achieve Bayesian
CRB performance, but once the input SNR is sufficient (e.g.,
above 20 dB), performance of the compressively sampled high-
bandwidth waveforms is improved over the low-bandwidth
Nyquist sampling. For example, we can see that for the same
input SNR, the compressive schemes outperform Nyquist sam-
pling, as long as the input SNR is at least about 20-25 dB. We
note that performance in the asymptotic region is consistent with
the Bayesian CRB predictions.

Unlike random projections, the optimized sensing kernel de-
pends on a priori knowledge of the parameter to be estimated,
as the approximate gradient V¢ I(y;7) ((15) or (21)) shows.
Hence, it is important to study the sensitivity of the information-
theoretic-based sensing kernel optimization with respect to mis-
match in the knowledge of the a priori distribution. For the fol-
lowing results, we kept the actual distribution used by MMSE
estimation the same as before (7 ~ N (%, (%)2)), while chang-
ing the a priori distribution for the sensing kernel optimization
to different distributions shown in Fig. 7(a). From Fig. 7(b),

the MSE performance difference for mismatched a priori dis-
tribution only occurs in the threshold region, i.e., the interval
of SNR € [0 dB, 20 dB]. More specifically, when the a pri-
ori distribution cannot cover the actual distribution, e.g., 7 ~
N (%,(%)?), the sensing kernel optimized from the a priori
distribution results in larger estimation error. From this observa-
tion we conclude that the information-theoretic-based sensing
kernel is a little sensitive to the a priori distribution of the param-
eter to be estimated; therefore, the a priori distribution should
try its best to cover more possibilities in practical applications
while remaining tight enough to provide some benefit. By com-
paring different compression ratios (C R = 5 versus CR = 10),
we can see that the compressive sensing kernel with fewer rows
(CR = 10) is more robust to the a priori distribution mismatch
than the sensing kernel with more rows (C'R = 5). Nevertheless,
the optimized sensing kernel still significantly outperforms the
random sensing kernel by comparing Fig. 7(b) with Fig. 6(b).

B. Random Amplitude Case

In the random-amplitude case, the time delay 7 is assumed to
follow a normal distribution A'(4, (%)?). From Fig. 8, we can
see that the proposed optimal sensing kernel outperforms both
Nyquist and random compressive sensing at high SNR, which is
same as the previous results in the fixed-amplitude case. How-
ever, compared to the fixed-amplitude case, the threshold region
appears at much higher input SNR and the performance advan-
tage of the optimal sensing kernel is not as significant (though
still an order of magnitude improvement at the highest SNR
values). In addition, we also observe that there is a gap between
the MSE curve and the corresponding Bayesian CRB curve in
the asymptotic performance region. That is to say, the derived
Bayesian CRB (41) is not as tight as it was in the fixed-amplitude
case, at least not within the input SNR range evaluated here.
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VI. CONCLUSION

In this paper, we have evaluated the fundamental behavior
of time delay estimation in a sub-Nyquist receiver and applied
a sensing kernel optimization method previously proposed for
radar target profiling in [16], [17]. The optimization method is
applied by quantizing the prior pdf of the time delay parameter,
which leads to a Gaussian mixture distribution and eventually to
a gradient-based search process for an optimized compressive
sensing kernel. The results demonstrate the inherent and poten-
tially beneficial design tradeoff between SNR loss and system
resolution enabled by compressive sampling. This tradeoff is
likely a losing proposition when low input SNR is expected,
but compressive implementations may result in improved per-
formance when SNR is not the limiting factor. At high SNR, the
increased native resolution of a compressive implementation
enables compressive high-resolution radar imaging that may

outweigh the inherent SNR loss that is a disadvantage of com-
pressive systems.

Further, we show how a priori knowledge can be used to
enhance the performance of compressive systems by properly
trading between SNR loss and resolution. We believe the ba-
sic conclusions observed in the time delay application are valid
for other compressive parameter estimation problems. If these
compressive sampling structures enable, for example, increased
integration time or increased aperture, then higher native resolu-
tion can be exploited at high SNR [20] (which has always been
the motivation for structures such as sparse arrays [36], even be-
fore the recent focus on CS). These basic conclusions include:
1) the threshold input SNR of a nonlinear estimation problem
will increase due to the unavoidable SNR loss of compressive
RF systems, 2) in the asymptotic performance region, the benefit
of additional resolution enabled by compressive sampling can
outweigh the disadvantage of reduced SNR, and 3) SNR loss
can be mitigated and estimation performance can be improved
by optimizing the CS measurement kernel according to the prior
pdf of the parameter and expected SNR of the scenario.
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