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Abstract—The design of wideband radar systems is often lim-
ited by existing analog-to-digital (A/D) converter technology.
State-of-the-art A/D rates and high effective number of bits result
in rapidly increasing cost and power consumption for the radar
system. Therefore, it is useful to consider compressive sensing
methods that enable reduced sampling rate, and in many applica-
tions, prior knowledge of signals of interest can be learned from
training data and used to design better compressive measurement
kernels. In this paper, we use a task-specific information-based
approach to optimizing sensing Kkernels for highresolution radar
range profiling of man-made targets. We employ a Gaussian mix-
ture (GM) model for the targets and use a Taylor series expansion
of the logarithm of the GM probability distribution to enable a
closed-form gradient of information with respect to the sensing
kernel. The GM model admits nuisance parameters such as target
pose angle and range translation. The gradient is then used in a
gradient-based approach to search for the optimal sensing kernel.
In numerical simulations, we compare the performance of the
proposed sensing kernel design to random projections and to
lower-bandwidth waveforms that can be sampled at the Nyquist
rate. Simulation results demonstrate that the proposed technique
for sensing kernel design can significantly improve performance.

Index Terms—Compressive sensing (CS), Gaussian mixture
(GM), optimal sensing matrix, radar profiling, task-specific infor-
mation (TSI).

I. INTRODUCTION

ITH the continued development of radar technology,

more wideband signals are being used to improve
system performance and range resolution. A typical radar
system transmits a modulated wideband pulse, such as a linear
frequency modulation (LFM) waveform, and then correlates the
received signal with the transmit waveform via an implemen-
tation of the matched filter, which achieves pulse compression.
However, for a wideband waveform, Nyquist-rate pulse com-
pression generally requires a high-rate analog-to-digital (A/D)
converter. Alternative approaches such as LFM waveforms
with stretch processing or the use of stepped frequency wave-
forms exploit waveforms that trace out a wide bandwidth over
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time. Therefore, reduced-rate sampling can be performed, but
at the expense of a large overhead in collection time. Hence,
achieving adequate A/D conversion for an instantaneously
wideband radar signal imposes severe challenges on the ac-
quisition hardware in terms of high sampling rate and high
dynamic range. In many cases, the required A/D technology
is too costly and consumes too much power. In some extreme
cases, the required combination of sample rate and bit depth
may not exist; therefore, it is beneficial to consider acquisition
of radar signals at lower, sub-Nyquist sampling rates.
Motivated by sampling limitations across many domains,
compressive sensing (CS) [1] theory has received wide atten-
tion in the past decade because it can be used to acquire and
accurately recover signals at a far lower sampling rate than the
standard Nyquist-Shannon sampling rate. In general, signal re-
construction from undersampled measurements is a well-known
ill-conditioned problem, and extra constraints must be adopted
in order to regularize the solution. Broadly speaking, CS theory
states that a signal can be accurately reconstructed if the signal
is sparse in some basis, which is generally characterized by the
fact that the signal has only a few non-zero coefficients when
represented in that basis. For such a signal, a basic requirement
of the measurements in the framework of CS theory is that the
sensing kernel must be incoherent with the representation basis
of the signal, which leads to accurate signal reconstruction with
high probability [1], [2]. It is well known by now that random
measurement kernels, such as Gaussian and Bernoulli kernels,
meet this incoherence requirement [1], [2], and measurements
taken with random kernels are now routinely called random
projections. However, random projections do not exploit any
prior knowledge of the signal beyond sparsity. In practical
radar applications, prior knowledge of the signal is usually
available. For example, training samples can be used to obtain
statistical characteristics of the signal, which then introduce
the possibility of optimizing the sensing kernels according to a
metric that is appropriate for the radar’s exploitation task.
Task-specific information (TSI) is a metric for sensor analysis
and design that was first proposed in [3], [4] as an analysis tool
for feature extraction in imaging systems. The TSI formulation
maximizes the Shannon mutual information between the mea-
surements and a task-specific source variable. In an estimation
task, the source variable can be a vector representing the signal
to be recovered or a parameter vector that parameterizes the re-
ceived signals. In hypothesis testing problems, the source vari-
able is typically a discrete random variable representing the hy-
pothesis class labels. Unlike the common CS approach of using
random sensing kernels, in this paper we develop and apply the
TSI metric to the problem of sensing kernel design for radar
range-only profiling and target recognition. The TSI metric is
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valid and useful for sensor analysis and design because of its re-
lationship to mean-square error (MSE) via conditional entropy
[5] and its relationship to probability of error (PE) via Fano’s in-
equality [6]. In many cases, MSE/PE cannot be used directly as
an optimization metric without knowing and having the ability
to compute the optimal estimator/detector; therefore, informa-
tion-based approaches can sometimes lead to more useful ex-
pressions for sensor performance.

Our goal is to maximize range profiling fidelity via kernel
design and prior signal models. Many real signals are better
described by a mixture probability distribution than by a single
probability distribution. Among mixture distributions, the
Gaussian mixture (GM) distribution is a typical one because
of its flexibility and tractability. A GM distribution describes
signals using a collection of Gaussians, and in most cases
the mixture can be made arbitrarily accurate by increasing
the number of components. In previous research, GM models
have been effective in describing practical signals for various
applications, including image inverse problems and statis-
tical CS [7]-[11]. In our case, the GM enables modeling of
a compressible target structure through low-rank covariance
matrices while allowing that low-rank structure to vary across
components in the mixture. By relating different components
in the mixture to different intervals of unknown target param-
eters such as orientation angle, the GM distribution enables
modeling of compressible target profiles that are parameterized
by physical parameters. Therefore, the GM representation
also allows prior distributions on target parameters (such as
range or orientation) to be used in the kernel optimization and
profiling processes. Such prior information might be derived,
for example, from previous track information. Finally, other
representations of structured sparse signals are available [12],
such as tree-based sparsity [13] and block sparse models [14].
However, the GM mixture approach is more suitable for the
purposes here due to the fact that it enables measurement kernel
optimization through an information-based metric as well as
closed-form signal reconstruction.

In order to optimize the sensing kernel, we derive the approx-
imate gradient of TSI with respect to the sensing matrix using a
first-order Taylor series expansion of the logarithm of the prob-
ability distribution. The approximate gradient is then used in a
gradient-based search to find the optimal sensing kernel. Our
simulation results are generated from high-fidelity modeling of
three different targets: F-16 and F-18 fighter aircraft, and an
A-10 attack aircraft. These simulation results demonstrate the
performance improvement of the GM optimized-based sensing
kernel design compared with that of random sensing kernels
both in radar range profiling and target recognition [15], [16].

The rest of the paper is organized as follows. In Section II, we
briefly describe the radar signal model and present the minimum
mean-square error (MMSE) range profile estimator based on the
GM assumption. In Section III, we propose an optimal sensing
kernel design method based on GM priors, and in Section IV, we
compare the performance of the proposed sensing kernel with
that of random sensing kernels and Nyquist performance. We
make our conclusions in Section V.

II. SIGNAL AND TARGET MODELS

In a radar system, the complex baseband signal r(¢) reflected
from a target can be modeled as a convolution [17] between the
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Fig. 1. Traditional radar receiver perform matched filtering either in the (a)
analog or (b) digital domain.

transmitted baseband radar pulse 4(#) and the baseband target
impulse response x(¢) as

x(t) + n(z)

r(t) = 9(t) *

= / P(t — 7)x(7)dT 4+ n(t), )
where n(¢) is complex additive Gaussian noise. Traditionally,
a band-limited measurement of the radar target x() can be ob-
tained by pulse compression, that is, by correlating the received
signal r(¢) with the transmit pulse 14(¢) in a matched filter. This
matched filtering can be performed in either the analog or dig-
ital domains, but both implementations require a high-rate A/D
converter, as seen in Figs. 1(a) and (b) [18].

We note that the target signals x(¢) for man-made targets
are typically compressible in some representation basis. For ex-
ample, the target impulse response might be dominated by only
a few dominant reflectors, resulting in a target response that is
compressible in the time domain. CS theory indicates that sparse
signals can be acquired and recovered with many fewer samples
than suggested by the Nyquist sampling rate. Although our sig-
nals of interest are compressible, not sparse, CS theory still in-
dicates the potential for measuring and encoding only M linear
projections of the received signal r(¢) using a set of measure-
ment kernels {¢,,,.m = 1,---, M}, where M is much less than
the number of samples required at the Nyquist rate. The mth
data sample is obtained through a projection of the noisy re-
ceived signal r(t) onto the rnth measurement kernel ¢,,, (¢) as

Ym = (B (1), r (1))

T

= | dulrnar
L

~ AN dullr]l]
=1

=AY dnll l / T BUA - )x(r)dr +nll]
=1 70

L
A A pll]
=1

where (-, -) denotes an inner product, T is the maximum dura-
tion of the reflected signal (which depends on both the wave-
form and target impulse response durations), L = T'/A, T, is
the maximum duration of the target impulse response, N, =
T, /A, and the integrals have been approximated by dividing
into discrete intervals of width A. If the interval A is much
smaller than the reciprocal of the bandwidths of both the mea-
surement kernel and the waveform, then the signals do not vary

N )]

A zr: Y[l — nlz[n] + nfl]
n=1
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Fig. 2. Compressive radar receiver.

significantly within a discrete interval and the approximation
will be accurate.
Stacking the measurements {4,,,m = 1,..., M} gives

y = ®(¥x +n), 3)
where y € €M is the measurement vector, ® € CM*7 is the
sensing matrix with mth row comprising the sampled measure-
mentkernel ¢, [{], ¥ € CL*N= is the discrete waveform matrix
with nth column comprising the sampled waveform delayed by
(n — 1A, x € C™ is the unknown target profile (henceforth,
the signal) to be estimated, and n ~ CA/(0, C,,,,) is zero-mean
complex Gaussian noise independent of signal x. Fig. 2 is the
system block diagram of a compressive radar receiver. Our goal
is to design the sensing matrix € (and equivalently the analog
compression kernels ¢,,(t)) to recover the signal x as accu-
rately as possible from the measurement y. Defining the wave-
form bandwidth as B, the underlying dimensionality of the re-
ceived signal r(t) is N = BT, and the compressive sampler
should have M < N. We also note that the sensing matrix oper-
ates on the noise in addition to the signal, which must be the case
for a radio frequency (RF) sub-Nyquist sampling system where
the signal is carried on transmission lines and the compression is
implemented in analog electronics. One significant consequence
of (3) is that RF sub-Nyquist systems suffer a signal-to-noise
ratio (SNR) penalty compared to Nyquist sampling due to noise
folding [19], [20].

The sensing kernel € must enable the estimation of the
length-N, signal x from the length-A/ measurement y, which
is generally ill-conditioned because M <« N,. However, in
the case where x is known to be sparse, the sensing kernel ®
can be selected as a random matrix [1], [2], [21]. In such a
case, both the restricted isometry property (RIP) [1] and the
required incoherence between ® and ¥ can be achieved with
high probability. When the RIP/incoherence holds for a given
level of signal sparsity, the signal x can be recovered by solving
a sparsity-constrained optimization problem that has a unique
solution [22].

These fundamental theorems of CS do not make assumptions
regarding prior knowledge of the signal x except for its spar-
sity. However, in some practical applications including radar
range profiling, the distribution of the scattered signal for tar-
gets of interest can be learned from training samples; hence, the
distribution can be regarded as (approximately) known a priori.
Specifically, in this paper we model the target range profiles with
a Gaussian mixture distribution where each component in the
mixture has a low-rank covariance matrix. Each component of
the mixture represents a compressible target profile learned over
some small window of target orientation and range translation.
Taken together, the components in the mixture can describe the
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compressible target over a wide range of target parameters. This
compressible representation then admits compressive sampling
followed by MMSE reconstruction.

Let the probability density function (pdf) of signal x be mod-
eled by a K-component GM given by:

~ Y mCN (), c),
x ]Z;pkc./\/ (ux,c )

4)

where », ;- px = 1, and the cardinality (denoted by | - |) of
the set £ = {1,2,...,K} is |[K| = K. The GM distribution
means that the £th component is activated with probability p;. >
0, and when activated, that component generates a complex-
valued Gaussian signal with distribution law CA’ (u,(f)7 C,(fx))
The set {px, ul? , C,((’;); k € K} defines the GM parameters of
x. Under (4), it can be shown that y in (3) is also a GM with |K|
components, and its pdf has the form

F&) = et ),

ke

)

where the kth component f*)(y) = CN(ugk),Cy;)) is a
Gaussian density with mean and covariance

ug,k') = ‘I>‘I'u,((k)

k k H H
clt) = @ ($CRTH + C,) 7, ©)

where (- ) denotes the Hermitian transpose.
When the signal x is a GM, the MMSE estimator defined by

min E {||x - %[5} (7
is given by [23]
X =FE{xly} = Z pk,‘yu)(f@, 8)
kex
where E{-} denotes statistical expectation,
pef P (y)
P ®

is the posterior probability of the £th component given the mea-
surement y, and
1
ul) = ul + c®)(@w)" (Cg’y) (y - u§"‘>) (10)
is the kth MMSE estimator component given the measurement
y [24].

Because we assume a prior distribution on the signal x, we
use the above MMSE estimator in our performance evaluations.
Unlike the common solutions in the CS theory, the MMSE-
based estimator (8) is analytical for a GM-distributed target
signal; furthermore, the estimator and its performance clearly
depend on the sensing kernel @. In contrast to randomly gener-
ated sensing kernels, the sensing kernel & can now be optimized
based on a priori knowledge of the signal.

Finally, we comment on structure imposed on the sensing ma-
trix by the architecture in Fig. 2. At any given sample instant of
the A/D converter, the resulting sample is a consequence of the
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most recent 7Ti,; seconds of data where T3, is the effective in-
tegration time of the preceding filter. If the sampling interval is
matched to this integration time, then successive samples result
from approximately non-overlapping intervals of time, which
translates to non-overlapping rows of the sensing matrix. In
other words, the sensing matrix corresponding to the implemen-
tation in Fig. 2 should have an envelope with block structure
such as in

1.1 0---0 0---0
—— N N
L#] L] L2l
0---0 1.1 0---0
< ——

L&) L] L-2lw] ],
— T N~ S
IRt N B N b A

where || denotes the floor function. Later in the paper, we use
this structure as a mask to enforce physical hardware constraints
in our gradient search optimization of the measurement kernel.
Because of the tighter constraints on structure, performance of
kernels subject to this masking operation may be lower than for
parallel kernels where the structure is not enforced. Implemen-
tation of parallel kernels requires the signal to be split, which has
varying impact on SNR depending on the number of branches
in the receiver and the quality of the initial low-noise amplifier.
An analysis of these architecture tradeoffs in the context of radar
target detection has been performed in [25].

III. OPTIMAL SENSING KERNEL BASED ON
a priori KNOWLEDGE

In order to design an optimal sensing kernel, we define TSI for
the range profiling problem as the Shannon mutual information
1(y;x) between the source signal x and the measurement y
according to [6]

TSI = I(y;x) = H(y) - H(y[x), (1D

where H(y) = —E{log[f(y)]} denotes the entropy of the mea-
surement y, and H(y|x) = —E{log[f(y|x)]} denotes the en-
tropy of the measurement y conditioned on the signal x. It is
intractable to compute the TSI in (11) due to the dimensionality
of the problem and non-Gaussianity of parameters.

Our objective is to maximize TSI over all allowable sensing
matrices, 1.€.,

d I M .
max (y;x)

Because the optimization variable ® is a matrix, dimensionality
is high and a full numerical search is numerically intractable.
We prefer a gradient-based search method, which requires the
calculation of

Vel(y;x) =VeH(y) - Vo H(y|x). (12)
Unfortunately, the entropy calculation also does not have a
closed form for most pdf’s of interest in practical radar ap-
plications, including the GM model we have assumed in this
paper. Instead, our approach is to substitute in the GM pdf and
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to perform a Taylor series expansion of the logarithm of the pdf
required in the entropy definition. After this expansion, we can
compute the gradient of the approximated entropy expression
with respect to the sensing matrix, which will be used in a
gradient-based sensing kernel optimization process.

First, substituting the GM pdf (5) of the measurement vector
y into the definition of entropy for the measured data, we have

K K
H(y) = - / > paf O (y)log lZpk,f“’)(Y)] dy
=1 k=1

K K
I L [Zpk.f“)(y)] dy

k=1

X
~log [Z Pk;f(k)(y'o)] ;
k=1

R

(13)

where yg is the mean value of the measurement and the full
derivation can be found in the Appendix.

Next, we make a zero-mean assumption specific to the radar
range profiling application. In this application, changes in the
target’s range on the order of a wavelength cause the phase of
the reflected signal to vary dramatically. Although it may be
possible to estimate a target’s range to within the radar’s range
resolution, the radar’s bandwidth is often at least an order of
magnitude smaller than the center operating frequency. Thus,
even if the target’s position is estimated to sub-range-resolu-
tion accuracy, the range uncertainty is still on the order of a
wavelength or more, making the overall global phase of the
reflected signal completely uncertain. For completely random
phase, the mean of the received signal is zero; consequently,
we set uyk) = 0 for all individual Gaussian components of y.
For individual Gaussian components that are all zero mean, it
makes sense to set the Taylor Series expansion point to yg = 0,
resulting in

, 1 Ay—a)? Te ] T (y—ul®
FOgo) = Ll ] o)
TF‘M ny y:ug,k):o
S (14)
Y k)|
[
We now have
K 1
H(y) =~ —log [Zpk C;ky) + Mlogr (15)
k=1

where the second term is a constant independent of ®.

Now that we have an approximation to the entropy of y, we
take the gradient of the resulting expression in (15) with respect
to the sensing matrix ®. Using the chain rule for derivatives of
logarithms, we have

i

X (k) @ H |t
> Ve {|@ (2CRET + Oy ) 27|
_ k=1
= — e . (16)
Z Dr ‘ny
k=1

VaH(y)

K
~ Vg {—log [Zpk ‘Cg,"y)

k=1
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Finally, using properties of matrix derivatives [26], (16) can be
written as (17), shown at the bottom of the page, where the de-
nominator is a positive, real scalar that impacts the overall mag-
nitude of the gradient, but not the direction. Thus, as approxi-
mated with the Taylor expansion, the gradient of the entropy
of the measurement with respect to the sensing matrix for a GM
prior is a weighted set of gradients. The individual gradient com-
ponents are scaled by a combination of a) the probability of that
component in the mixture, and b) the interaction between the
current value of the sensing matrix with that component’s struc-
ture (via the determinant term).

Considering the second term H (y|x) in (11), when the source
signal x is given, the only random contribution is due to noise.
That is to say,

H(y|x) = H ((®#Px + $n)|x) = H(®Pn|x) = H(®n), (18)

because ®n ~ CA(0,®C,,,®%) is independent of x. The
entropy of this term is

H(®n) = log ‘We@Cnn‘I'H’

=log |#Cpn,®” | + Mlog(me) (19)

where the second term is a constant independent of ®. Using
the chain rule for derivatives of logarithms, the gradient of the
entropy of the noise term with respect to the sensing kernel is

VoIl (®n) = Vg {log |2Chn®”|}

= [8Ca®"] " ®C,n. (20)

Substituting (17) and (20) into (12), the approximated gra-
dient of TSI with respect to the sensing kernel is (21), shown at
the bottom of the page, which can be used in a gradient-based
search process according to

& =& +Val(y;x), (22)
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where v > 0 is a small stepsize. In the gradient-based search
method, an appropriate stepsize is important for the conver-
gence of the iterations. The stepsize can be fixed or adaptive.
During the sensing kernel optimization process, the updated
sensing kernel @ is substituted for ® in the next iteration of cal-
culating (17) and (20) and then updated using (22) to achieve an
iterative search procedure.

When the complex additive Gaussian noise n is added prior
to compression as in the RF model of (3), then the sensing ma-
trix operates on the noise as well as the signal. Therefore, there
is no benefit to having non-orthonormal measurement kernels
(even in the case of colored noise), and henceforth we assume
®® = I). If we further assume that the additive noise is white
(namely, C,,, = I), then H(®n) in (19) is a constant indepen-
dent of ®. In the white-noise case, any additional structure of
@ other than the orthonormal assumption has no impact on the
entropy of the output noise [27]. Hence, the gradient of the en-
tropy of the noise term in (20) can be simplified as

VeH(Pn) = 2. (23)
Meanwhile, the gradient-based update equation (22) can be re-
arranged as

P=(1-72+7VaHl(y), (24)
which is a convex combination between the current sensing
kernel and the gradient of the entropy of the measurement with
respect to the current sensing kernel. From (23) and (24), we
can conclude that TSI cannot be increased simply by scaling ®
to be larger. Because the noise is added prior to compression,
scaling ® results in proportional scaling of both the signal and
noise.

In summary, the sensing matrix optimization method per-
forms the following iterative process:

Step 1: Initialize the sensing matrix ®;

K —1 —1
S i \cgky [@(\I:ci’;)qﬂ + Cnn)@H] s(wCcH e + C,)
k=1

Ve H(y) 7 "
> e |Cyy
k=1 i

K (k')
S i ‘@(\pcx,’( TH 4 Cpp)®H
k=1

-1

- (k) g I A (k) g H
[@(\I:cxx\p +cnn)q>} S(TCHTH + C,y)

K
Z D
k=1

(17

1
swchlwn | cnn)«x»H‘

& (k) - (k) - (k)
S e |@(ECE @H+Cnn)q>H‘ [@(\pcxx @H+Cnn)q>H] srcHoiic,,)
k=1

Val(y:x)=-

K

Z Pr

k=1

P(VCETHLC,, ) BH

~ [#Can®”] ' ®Cyn,
‘71

21
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Step 2: Calculate Vg H(y) and Vg H(®n) via (17) and
(20) to obtain an approximate gradient of TSI with
respect to the sensing matrix Vg I(y; x) (21), eval-
uated at the current iteration of the sensing matrix;

Step 3: Calculate the updated sensing matrix ® via (22);

Step 4: Re-orthonormalize the rows of ®, set ® to the result,
and go to Step 2.

The convergence criterion of the iterative process is chosen
as:

0 <6V < zand 69 < 561, (25)
where
o = Vg V|| - |V s

is the norm difference of the gradient of TSI, and the conver-
gence parameter € > 0 is a predefined small positive number.
The convergence criterion requires that the gradient of TSI
should converge to zero and the iterations ) should decrease
step by step.

The present sensing matrix optimization process is not adap-
tive, which means the optimization of sensing kernel ¢ does not
depend on the signal x and can be performed off-line. Finally, if
the masking structure discussed earlier should be applied to ®
in order to represent physical hardware constraints, then the up-
dated sensing matrix ® (24) should be masked before its re-or-
thonormalization in Step 4. The masking operation is performed
by element-wise multiplication of @ with a masking matrix be-
tween Step 3 and Step 4. The row re-orthonormalization of ® in
Step 4 is an orthogonal Procrustes problem [28], which is easy
to solve using the singular value decomposition (SVD) of @ to
determine the row orthonormal matrix closest to ®. In the case
of the masking structure, the rows of ® are already orthogonal
and only need normalization.

From (21), the computational complexity of calculating the
TSI gradient with respect to the sensing kernel is O(K N, L?)
because N, < L. Hence, the overall computational complexity
of the proposed compressive sensing kernel optimization is
O(JK N, L?), where .J denotes the number of iteration.

IV. SIMULATION

We now present simulation results that demonstrate the
performance improvement achievable through the proposed
sensing kernel design method. A GM model for targets of
interest is learned from a target template library by grouping
together templates with similar target parameters (i.e., pose
angle) into Gaussian components. The GM distribution is
then used for both the sensing matrix optimization and for the
minimum mean-square estimator.

We used finite-difference time-domain (FDTD) electromag-
netic modeling software to perform time-domain modeling of
several targets. We used publicly available CAD models for an
F-16 fighter, F-18 fighter, and A-10 attack aircraft [29]. These
aircraft have different physical sizes and average radar cross
sections (RCS). We used FDTD to calculate wideband time-do-
main responses from these targets at 0.1° intervals in azimuth
from head-on (0°) to sidelooking (90°). The aspect elevation
angle was held constant; therefore, we obtained 901 profiles per
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Fig. 3. Time-domain impulse responses of three aircraft.

target. Because the FDTD software automatically sets the sim-
ulation timestep, we normalized the timescales of the various
FDTD results such that each profile in the target template library
was generated with the same effective bandwidth. We also nor-
malized the magnitudes of the responses to correspond to pub-
lished RCS levels: 1 m? for the F-18, 2 m? for the F-16, and
5 m? for the A-10. Fig. 3 shows the target templates for each
target at 901 different azimuth angles. The total number of tem-
plates over the three targets was 2703.

In order to learn an approximate GM distribution from the
2703 target templates, we assumed that target profiles from the
same target at similar aspect angles could be grouped together
into individual components of the Gaussian mixture. The
discrete-time target impulse response for a particular target at
a particular azimuth angle can be viewed as a vector in V,-di-
mensional space. As the azimuth angle varies continuously,
this vector traces out a one-dimensional non-linear manifold
in IV,.-dimensional space. A piecewise linear approximation to
the non-linear manifold can be obtained by grouping together
profiles corresponding to similar aspect angles. For example,
as the target azimuth angle varies from 0° to 1°, the target
impulse response vector traces out a short, contiguous piece
of the overall target manifold. If we use the impulse responses
from this short piece of manifold to compute a sample covari-
ance matrix, and then use that covariance matrix for the first
Gaussian component in the mixture, then we can view the first
component as a linear approximation to the first segment of
the non-linear manifold [9]. Likewise, if we repeat the process
to obtain a second Gaussian component created from profiles
covering angles from 1° to 2°, we have a linear approximation
to the second piece of the target manifold. Continuing this
process, we can obtain a piecewise linear approximation to the
overall target manifold. For our set of profiles ranging from
0° to 90°, we have divided the target manifold into segments
corresponding to 1-degree increments of the target pose angle.
Therefore, we obtained 90 components (K = 90) per target
in the Gaussian mixture, for a total of 270 components in the
overall mixture. Although this training setup means that only
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TABLE 1
PARAMETERS OF THE FOUR TRANSMIT WAVEFORMS WITH 250 MHZ BANDWIDTH
Waveform Types Bandwidth | Pulse Width | Nyquist Samples | Compressive Samples
Narrowband unmodulated pulse (NB AO) | 16.7 MHz 0.06 us 4
Wideband unmodulated pulse (WB AO) 83.3 MHz 0.012 us 17 3
LFM pulse (LFM) 83.3 MHz 0.132 ps 27 5
Length-11 Barker code (BC) 83.3 MHz 0.132 us 27 5

10 training samples are used to estimate each Gaussian com-
ponent, the effective rank of each component is much smaller
due to the compressible nature of the target, and the number of
training samples is sufficient.

In some cases the target templates may vary sharply for small
changes in aspect angle, and the method of locally grouping
templates into mixture components may not be the most accu-
rate method for fitting the GM model to the training set. How-
ever, the locally grouped approach allows for prior knowledge
on the physical parameters to be mapped directly to the mix-
ture weights. For example, suppose that the target has been
detected and tracked previous to transmitting a wideband pro-
filing waveform. Based on the track history, it may be pos-
sible to estimate the target’s pose angle. Using this estimate,
and knowing that there is some uncertainty to the estimate, it
is possible to describe the target’s orientation with a proba-
bility distribution, which can then be mapped into the proba-
bility weights of the mixture. If the target is believed to be ori-
ented at a 45° angle, then the Gaussian mixture components
around 45° should have the highest probability while mixture
components corresponding to 0° or 90° should have weak prob-
ability. Therefore, target parameter estimates can be directly
used to fine tune the GM target model for better sensing kernel
design and profiling results.

For the Monte Carlo simulation study, our test signals were
not drawn from the GM prior directly; instead, we picked one of
the three target types with equal probability and then generated
a target profile with randomly selected azimuth angle. Because
the angle realization generally did not fall on one of the grid
points where we had an existing target response, we used linear
interpolation to obtain the test profile from the two nearest tem-
plates in the target library. While this approach resulted in model
mismatch between the actual statistics of the target profile and
the GM prior, this mismatch is an important factor to include in
analyzing the proposed method. Finally, in order to model small
range translations on the order of the radar wavelength, we as-
signed each test profile a random global phase generated from
a uniform distribution.

After normalizing all target templates to correspond to the
same effective bandwidth, the final templates were defined on
a sampling interval of 75 = 4 ns. In other words, the target
template library corresponded to wideband responses generated
with an effective bandwidth of 250 MHz, which limited the
maximum waveform bandwidth that could be simulated. We
also wanted to ensure that any results we obtained represented
the effects of kernel design and prior distribution modeling, not
effects due to the fidelity of the input signal models. For ex-
ample, if we used waveform bandwidths of 250 MHz in our
simulations, any super-resolving capability of the compression
kernels might be artificially limited by the fact that the source
signals were limited to only 250 MHz. Therefore, we decided

to limit bandwidth of the transmit waveform to one-third of the
bandwidth of the input source, for a maximum waveform band-
width of approximately 83.3 MHz.

In our simulations, we compared four different waveforms as
described in Table I. The first waveform is a narrowband refer-
ence waveform, selected such that no compression is needed for
a sampling rate of 16.7 MHz. This narrowband waveform is a
simple, unmodulated pulse (NB AO), used as our Nyquist ref-
erence. The fundamental issue is whether performance can be
improved by transmitting more bandwidth than the receiver can
sample, such that compressive sampling must be used. To eval-
uate this issue, we simulated three additional waveforms having
bandwidth five times higher than the receiver sampling rate. The
compression ratio for these waveforms, obviously, is five. The
first wideband waveform is a simple, unmodulated pulse (WB
AQO). The second is an LFM pulse (LFM), and the third is a
phase-coded waveform according to a length-11 Barker code
(BC).

Because of the different waveform bandwidths and because
some waveforms are modulated while some aren’t, the wave-
form pulse widths vary. Therefore, the maximum time dura-
tion of the received signal, which is the sum of the radar pulse
width and the maximum duration of the target impulse response,
varies for different waveforms. Consequently, the effective di-
mensionality of the received signal varies with waveforms, and
the number of samples required at Nyquist is not constant. In
order to compare waveforms, we chose to keep the sampling
rate (and compression ratio) constant, which results in varying
number of compressive samples as shown in Table I. Unfor-
tunately, with different combinations of bandwidth and pulse
width, there was no straightforward way to compare exactly the
same compression ratio and number of compressive samples.
Finally, in the process of sensing matrix optimization, the con-
vergence parameter was chosen as ¢ = 1 x 107, For the step-
size parameter, we found both v = 0.1 and v = 0.01 to be good
values, providing the same performance with reasonable con-
vergence time. When we set a small stepsize, e.g., v = 0.001,
the optimization algorithm still had not converged after several
thousand iterations. As Fig. 4 shows, the length of the target
source signal x at the simulation interval was /V,, = 48. Foreach
data point (SNR), Nasc = 10 000 Monte Carlo trials were per-
formed. Fig. 4 shows a sample set of range profile reconstruc-
tion results for the narrowband reference and the Barker-coded
waveform with both random and optimized compression. The
magnitude of reconstructed profiles are shown in comparison
to the true profile for the case where the target aspect angle
was uniformly distributed from 0° to 90° and the target’s range
translation was uniformly distributed over five range resolution
cells. It is apparent that the low-bandwidth reference waveform
does not provide enough resolution to separate closely spaced
target peaks in the presence of range uncertainty, but compres-
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Fig. 4. Sample set of profile reconstruction results (shown in magnitude) for
the case with range uncertainty.

sive sampling of the wider-bandwidth Barker Code improves
detail in the reconstruction.

Fig. 5 shows the relative MSE of target range-only profiling
for the case where the target aspect angle was uniformly dis-
tributed from 0° to 90°. All 270 components in the Gaussian
mixture (90 per target) have the same weight p;, = ﬁ, k €
{1,2,...,270}. The relative MSE is defined as

1 Nuce (X(d) _ f((d))H (X(d) — f((d))
> xH(d)x(d) 7

27
Naro 7)

where %(d) is the estimator of the dth Monte Carlo trial x(d).
The MSE is normalized in this way in order to remove RCS
differences between different targets as well as effects of target
SNR scaling on absolute error levels. The normalization is in-
dependent of waveform and compression scheme; therefore, it
does not impact conclusions about their relative performance.
The MSE performance is shown as a function of SNR for both
the TSI-optimized and random sensing matrices, where SNR is
defined as a scale factor on the target profiles - starting from
the normalized impulse responses, the templates were scaled by
V5N R to model varying receive power for varying range to
the target. The results for the narrowband reference pulse with
Nyquist sampling are depicted with the dashed line. In order
to justify an operational scenario where additional bandwidth
is transmitted, but sampled at the same rate as the narrowband
waveform, the compressive results should produce lower errors
than the narrowband reference. When the sensing matrix is al-
lowed to have arbitrary structure, the TSI-optimized results do
indeed outperform the narrowband reference. But when the se-
quential mask structure of the sensing matrix is enforced, the
compressive LFM results lose much of their benefit and the
compressive Barker-coded waveform actually performs worse
than the narrowband reference. In both cases (with and without
the masking structure), random compression performs worse
than the narrowband reference. Fig. 6 shows the same type of
results, but with target orientation limited uniformly between
40° and 70°. In Fig. 7, the target orientation is further limited
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to between 40° and 50°. As expected, performance improves
with stronger prior knowledge of the scenario, but the qualita-
tive conclusions regarding different waveforms and compres-
sion kernels remains unchanged.

The performance variation with type of waveform has to do
with the amount of overlap between the received signal and var-
ious rows of the compression kernel. For relatively long, mod-
ulated waveforms the optimized compression kernel is able to
sample variations in the waveform-target interaction. For ex-
ample, the LFM waveform begins at the low end of its fre-
quency range and gradually chirps faster. If one part of the target
impulse response contains particularly useful information, the
compressive receiver can observe the interaction of this part of
the target with low frequencies at the beginning of the pulse and
with high frequencies at the end of the pulse. In other words,
multiple samples produced by the compressive receiver can re-
sult from different parts of the waveform structure interacting
with the same part of the target. The unmodulated wideband
pulse, however, is very short and does not produce much varia-
tion in the waveform-target interaction for the compression ker-
nels to exploit. Furthermore, the absolute number of samples is
very low. These limitations are especially noticeable in the re-
sults with sequential mask structure where each row of the com-
pression kernel has a short time duration in which to capture the
short pulse. In general, longer modulated pulses lend more flex-
ibility to the measurement kernel design, especially when the
structure of the measurement kernel is restricted.

In general, because the wideband transmit waveforms have
higher bandwidth than the narrowband waveform, they should
achieve improved resolution. But in Figs. 5 through 7, the
wideband waveforms with compression perform only mar-
ginally better than the fully sampled narrowband waveform.
The reason for the limited improvement is that the target’s
absolute range is treated as perfectly known, which minimizes
the need for range resolution. In practical scenarios, existing
track information may be able to approximately locate the
target in range, but the range will always have uncertainty.
Therefore, we now also consider range as a nuisance parameter.
In the following simulations, range uncertainty is set to five
range resolution cells, and target profiles are added to the
target library in 0.1-resolution-cell increments. Therefore, the
target library now has 51 templates for every aspect angle,
each offset in range by 0.1 resolution cells. As before, we
group templates into Gaussian mixture components according
to similar parameters. Templates with up to one resolution cell
in relative delay are grouped together, creating five mixture
components in the range dimension. Combining the orientation
and range uncertainties together, there are now 450 Gaussian
components per target for the Gaussian mixture. For the results
shown below, the width of the component groups in range and
orientation have been chosen through experiment—we are cur-
rently researching the potential for using clustering algorithms
to minimize the number of components in the mixture while
retaining good profiling performance.

Similar to the results shown previously, Figs. 8 and 9 show
the MSE performances for range-only profiling, but now with
uncertainty in both orientation and range. In both cases, the total
range uncertainty is five range resolution cells while the orien-
tation uncertainty is [0°, 90°] and [40°, 50°], respectively. The
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Fig. 5. Target range-only profiling performance, [0°, 90°]. (a) Without mask, (b) With mask.
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Fig. 6. Target range-only profiling performance, [40°, 70°]. (a) Without mask, (b) With mask.
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performance difference between the TSI-optimized sensing ker-
nels, the narrowband reference, and the random sensing kernels
is now considerable. We can conclude that prior knowledge in
the design of the measurement kernels has enabled exploitation
of the resolution information inherent in the higher-bandwidth
waveforms.

Although it is nice to produce quality high-resolution range
profiles, in general these profiles would be used for some
exploitation task such as target recognition. Therefore, we now
consider recognition performance for the same compressive
measurement design strategy. The same waveforms and mea-
surement kernels are considered, but instead of computing a
range profile, we use the mixture model to compute posterior
probabilities for each of the three target types. The GM model
admits a closed-form calculation for the posterior mixture
weights, which can then be summed over all components
corresponding to a particular target type. We choose the target
that has the maximum posterior probability. In the Monte Carlo
simulations, each target is chosen with equal probability, and
the target’s orientation is chosen from a uniform distribution on

Relative MSE (dB)
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[40°, 70°] for Fig. 10 and [40°, 50°] for Fig. 11, respectively.
Probability of recognition error is shown versus SNR, and
again the modulated wideband waveforms with optimized
compressive sampling outperform the other combinations.

It is interesting that the tighter orientation information in
Fig. 11 compared to Fig. 10 seems to make a much larger
impact than it did for the profiling results. The reason is that
the recognition problem depends on separation of target types
rather than estimation of target profiles for the same target at
different orientations. Apparently, the tighter orientation infor-
mation in Fig. 11 is now enough to enable distinct separation of
the target types in the optimized, compressed measurements.

For the sake of completeness, we consider a simulation with
higher effective bandwidth of 1 GHz. In this simulation, the
target templates were defined on a sampling interval of T, = 1
ns, allowing transmit bandwidth to be increased without ex-
ceeding the underlying fidelity of the input target models. As
before, the bandwidth of the transmit waveform is limited to
one-third of the bandwidth of the input source, for a maximum
waveform bandwidth of approximately 333.3 MHz. Waveform
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Fig. 7. Target range-only profiling performance, [40°, 50°], (a) Without mask, (b) With mask.
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Fig. 8. Target range-only profiling performance with range uncertainty, [0°, 90°]. (a) Without mask, (b) With mask.
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Fig. 9. Target range-only profiling performance with range uncertainty, [40°, 50°]. (a) Without mask, (b) With mask.
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Fig. 10. Target recognition of three aircraft, [40°, 70°]. (a) Without mask, (b) With mask.
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Fig. 11. Target recognition of three aircraft, [40°, 50°]. (a) Without mask, (b) With mask.

TABLE II

PARAMETERS OF THE FOUR TRANSMIT WAVEFORMS WITH 1 GHZ BANDWIDTH

Waveform Types Bandwidth | Pulse Width | Nyquist Samples | Compressive Samples
NB AO 66.7 MHz 0.015 us 14

WB AO 333.3 MHz 0.003 us 63 13
LFM 333.3 MHz 0.132 ps 106 21
Pseudo-random code (PRC) | 333.3 MHz 0.132 ps 106 21

and sampling parameters are described in Table II. Because the
length of the longest Barker code is 13, in this simulation the
Barker code is replaced by a pseudo-random code (PRC).

Fig. 12 shows the MSE performance for range-only pro-
filing, with five resolution cells of range uncertainty and
[0°, 90°] orientation uncertainty. The advantage of wide-
band waveforms combined with TSI-optimized compression
kernels is again obvious when compared to random sensing
kernels and to Nyquist sampling of a reduced-bandwidth
waveform. One important change is that the performance of

the unmodulated wideband pulse is now comparable to the
other wideband pulses, which is unlike the result in Fig. 8.
Initially, we concluded that the modulated waveforms per-
formed better because their ratio of pulsewidth to target length
was higher. With the higher bandwidth results of Fig. 12, we
conclude instead that the unmodulated wideband pulse was
previously hindered by the fact that the compressed sampling
only allowed for three samples. This number was too small
in an absolute sense to provide sufficient flexibility on the
compressive kernel design.
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Fig. 12. Target range-only profiling performance with 1 GHz bandwidth with range uncertainty, [0°, 90° ], (a) Without mask, (b) With mask.

V. CONCLUSION

RF applications of compressive sensing suffer from SNR
loss due to noise folding. Therefore, the best applications of
RF compressive sensing will be in certain, non-noise-limited
circumstances, and prior knowledge should be used to optimize
the compressive measurement kernels for the given task. One
such application is radar profiling in high-SNR scenarios, and
toward that end, we have presented a compressive sensing
kernel optimization method based on the concept of task-spe-
cific information. The information-based approach requires
a prior distribution for the signal to be reconstructed; hence,
we have used a Gaussian mixture distribution to model target
template training data over aspect angle and range transla-
tion. Although the Gaussian mixture model can have high
complexity in the presence of multiple template parameters,
we have also shown how the model can be used to obtain
a gradient-based search procedure for measurement kernel
design. Continuing research includes efforts to reduce model
complexity via clustering algorithms. Examples of perfor-
mance improvement achievable through kernel optimization
have been demonstrated in a high-resolution range profiling
application. The simulated results show that improved profiling
and target recognition performance can be achieved by trans-
mitting additional bandwidth, even when the receiver must
perform compressive sampling of the reflected signals. Random
projections actually performed worse than a Nyquist-sampled
narrowband signal; therefore, we conclude that performance
improvement in an profiling application is most likely to be
achieved when prior knowledge is exploited in the measure-
ment kernel design. Designed kernels are more effective at
capturing relevant information and overcoming SNR loss. We
also observed varying performance for different waveforms
having the same bandwidth and time duration—further under-
standing of this behavior and potential joint waveform/kernel
optimization are additional potential areas of future work.

APPENDIX

In this Appendix, we derive the Taylor-expansion-based
approximation of the entropy of the measurement y. We
begin by performing a first-order Taylor series expansion of

log[Zf:l i) (y)] aroundy, = E[y] = uy, the mean value
of the measurement y, which yields (28).
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Substituting (28) into the second equality of (13), we obtain
(29). But, the function g(yg) is independent of y and can be
pulled out of the integration, resulting in (30), because u, =

K
Zq:l Pq u§’q) . .

In a similar way, we note that the term 10g[2£‘:1 pef* (yo)]
is once again independent of y. Therefore, we can express
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