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MIMO Channel Rank via the
Aperture-Bandwidth Product

Nathan A. Goodman, Member, IEEE

Abstract— An abstract progressive scattering model for
multiple-input, multiple-output (MIMO) wireless communication
systems is developed. In the model, the transmitted signal reflects
off multiple groups of scatterers on its way from transmit array
to receive array. The model is then used to predict the effective
degrees of freedom (EDOF) of different stages of propagation
within the channel. Using properties of the Karhunen-Loeve
expansion of random processes, it is shown that the EDOF of
a given stage are controlled by the product of observed spatial
bandwidth and observing aperture. Simulated results are then
provided to demonstrate how the individual stages interact with
each other to determine the EDOF and eigenvalue distribution of
the overall MIMO system. These results give additional insight
into the behavior of known propagation channels such as keyhole
channels and single-bounce channels with receiver-side spatial
correlation.

Index Terms— MIMO systems, multipath channels, informa-
tion rates.

I. INTRODUCTION

MUlti-antenna communication systems [1], [2] have
been well investigated in recent years due to their

potential for increased spectral efficiency. These multiple-
input, multiple-output (MIMO) systems provide large capacity
improvements by exploiting multipath rather than combating
it. This exploitation takes the form of multiple, spatially
parallel communication modes that depend on the eigenvalue
distribution of the channel propagation matrix.

The number of parallel communication modes for a MIMO
system has sometimes been called the system’s effective
degrees of freedom (EDOF) [3], [4]. It is well known that
spatial correlation at the transmit array, receive array, or both
cause a reduction in EDOF with a corresponding decrease in
system capacity. Furthermore, it is also known that spatial
correlation increases with reduced angular diversity of the
incoming multipath. This last fact can be used to explain the
poor performance of so-called keyhole channels [5], [6], [7]
where limited angle diversity somewhere within the channel
itself limits capacity despite favorable correlation properties at
both the transmitter and receiver. These general characteristics
of MIMO systems are well understood; however, an explicit
relationship between physical properties such as the angle-
power multipath profile of a communication channel and the
EDOF of a MIMO system has not been presented. This
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paper employs an abstract propagation model that models the
propagation between transmitter and receiver as a sequential
series of local scattering mechanisms. Each local scattering
group observes a given angle-power multipath profile. The
Karhunen-Loeve (KL) representation of random processes is
then used to characterize and provide intuition about the rela-
tionship between the propagation characteristics of individual
stages of a MIMO channel and the total system’s EDOF.

In work related to this paper, spatial correlation in MIMO
channels has been investigated in [3], [4], [5], [6], [8], [9].
In [3], the effects of spatial correlation are studied by vary-
ing antenna spacing and multipath angle spread. Moreover,
[3] defines the concept of EDOF as being the number of
valid parallel communication eigenmodes. Although [3] treats
the problem nicely in terms of spatial covariance matrices,
quantification of the EDOF based on propagation and antenna
array properties is not provided. In [8], it is shown that the
asymptotic capacity of correlated fading channels is still linear
in the number of antennas, but the slope of the capacity growth
is reduced from the uncorrelated case. In [4], asymptotic
capacity is investigated while holding the array size fixed.
Fixed array size means that antenna separation must decrease
as more elements are added, which increases the correlation
between adjacent antennas. The results in [4] are obtained
using properties of large random matrices.

Correlated fading and keyhole channels are considered in
[5], [6], [7]. In [5], examples of outdoor keyhole channels
are presented, and a conclusion is made that four-wavelength
antenna separation is sufficient given a keyhole channel with
scattering over a 30-meter interval (width) that is less than one
kilometer away. Requiring the scattering to be within a certain
distance ensures a modicum of angular spread that leads to
spatial decorrelation with reasonable antenna separation. Very
tight upper bounds on mean capacity were provided in [6] for
spatially correlated channels with finite transmit and receive
antennas. The results in [6] use properties of finite-dimension
random matrices rather than the large-matrix properties used
in [4]. In [7], a double scattering model is presented and used
to demonstrate the existence of keyhole channels that exhibit
low channel rank despite uncorrelated spatial fading at the
transmit and receive arrays.

Other work characterizes the fundamental MIMO capacity
of arrays defined by their length, area, or volume rather than
a particular configuration. For example, [10], [11], [12], [13]
characterize system capacity as a function of antenna density.
In order to remove the SNR advantage obtained by adding
more antennas within a fixed volume, [10], [11] apply a total
received power constraint rather than the usual constraint on
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received power per antenna. In [12], capacity versus antenna
density is considered by modeling the multipath environment
as a diffusive propagation medium. In [13], specific results are
presented for a circular array, but the general conclusion is
that capacity increases linearly with the number of antennas
until the circular array is well sampled. Beyond this point,
additional antennas provide diminished benefit because the
MIMO multiplexing gain has already been exploited and
maximized.

Generalized capacity results based on fixed antenna array
volumes are presented in [14], [15], [16], [17], [18]. In [14],
the capacity between a fixed-volume electromagnetic transmit-
ter and a fixed-volume electromagnetic receiver is considered.
Since no multipath is modeled, the results in [14] are most
applicable to line-of-sight optical communication. In [15],
the multipath channel is defined by a Green’s function that
quantifies the propagation between a fixed transmitting point
to a fixed receiving point. The full channel is then determined
by integrating the Green’s function over the transmitting and
receiving volumes. The integration is then approximated with
transmit and receive basis functions that can be optimized to
find the intrinsic capacity between the two volumes. A similar
volume-antenna approach is presented in [16], [17] where it is
shown how to calculate the Green’s function due specifically
to a finite number of scatterers. In [16], [17], capacity is
again seen to saturate once the array volumes become well
sampled with antennas. Detailed capacity results for single-
bounce, clustered-multipath environments is presented in [18].
The results in [18] show that the degrees of freedom due
to a single multipath cluster depend on the effective area of
the array and the solid angle subtended by the cluster. Other
related capacity investigations include a study of capacity
versus number of multipath components in [19], capacity in
the presence of mutual coupling and antenna loading in [20],
and a comparison of experimental and modeled results in
[21]. Except where specifically stated, the above investigations
focus on single-bounce propagation models.

The areas of MIMO propagation and channel modeling have
been treated in [7], [22], [23], [24], [25]. A general overview
of antenna and propagation concepts applied to MIMO is
provided in [22], including discussions of propagation mea-
surements, modeling approaches, and different channel types.
A virtual channel model is described in [23], [24] with the goal
of characterizing the relationship between scattering physics
and system capacity. Although the virtual model and objective
of [23], [24] are similar in spirit to those of this paper,
the progressive scattering model and interpretation presented
here allow further insight into the behavior of channels such
as keyhole channels, which are mentioned but not explicitly
treated in [23], [24]. Furthermore, our approach allows us to
quantify the number and relative strength of the EDOF as a
function of the angular scattering profile. Finally, conditions
that produce high-rank versus low-rank MIMO channels are
considered in [7] using abstract models for green field (no
multipath), single-bounce, and double-bounce channels.

This paper extends the abstract model of [7] to N -bounce
scenarios where the transmitted signal reflects off N different
groups of scatterers on its way from transmit array to receive
array. The scattering from each group is given an average

power profile and angle spread that define the power spectral
density (PSD) for the spatial random process incident on the
next scattering group. In this way, we can use results for
the degrees of freedom necessary to represent bandlimited
random processes to predict the EDOF of different stages of
propagation within the channel. The EDOF of a given stage
are controlled by observed spatial bandwidth and observing
aperture. Application of these results to the progressive scat-
tering model provides an intuitive demonstration of how the
EDOF and propagation paths of different stages interact with
each other to determine the EDOF and eigenvalue distribution
of the overall system.

The paper is organized as follows. In Section II, we present
an abstract, progressive propagation model used in this paper
for analysis and simulation. We also investigate properties of
the channel model including capacity and overall EDOF. In
Section III, we discuss KL representation of random processes,
which leads to an aperture-bandwidth product rule for the
EDOF of a single propagation stage. Simulated results are
shown in Section IV, including results for both single-bounce
and double-bounce channels. Some simulations are designed
to match single- and double-bounce channels presented else-
where in the literature, and we show good agreement when this
is the case. Furthermore, we can make interesting conclusions
about physical channel properties in these situations. Our
conclusions are presented in Section V.

II. PROPAGATION MODEL AND CHARACTERISTICS

In this section, we present the propagation model used in
our analysis of multi-antenna wireless systems. The model
is capable of representing any spatial correlation structure at
the transmitting or receiving array, as well as line-of-sight,
single-bounce, keyhole, and progressive-scattering scenarios.
Although the model cannot represent the diagonally correlated
channel investigated in [26], [27], it will be shown that the
model can reduce to several special cases considered, for
example, in [3], [4], [7], [25].

A. System Model

Consider the situation depicted in Fig. 1 where the signals
leaving the nT antennas of the transmit array successively
scatter from N groups of scatterers as they travel from transmit
array to receive array. In this process, the signals propagate
from the transmit array, then arrive and combine at the first
group of scatterers. The signals incident on the first scattering
group are then scattered with a random reflection coefficient.
The scattered signals then propagate away from the first group
toward the second group of scatterers, and so on until the
signals are reflected from the last group of scatterers and arrive
at the receive array. This type of progressive scattering model
has been explored in [28], [29], [30]. In [29], it is argued
that propagation between different floors of a building is an
example where progressive scattering may be applicable. In
[5], it was shown that propagation from a rooftop to a street-
level mobile can act as a keyhole channel. Extending this
scenario to propagation between multiple rooftops on the way
to a mobile is another possible application of the progressive
scattering model.
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Fig. 1. Progressive scattering model.

The scatterers in each group are effective scatterers that
represent the cumulative effects of many physical scatterers
located at approximately the same angle of departure or
arrival. The effective scatterers represent only the energy that
is scattered toward the next scattering group or antenna array,
and energy absorbed or scattered in other directions is assumed
to be lost. This is similar to the approach taken by many
abstract scattering models such as the one-ring model [3], [25],
[31] where all physical scattering is represented by a uniformly
spaced ring of effective scatterers. Moreover, the one-ring
model usually employs known parameters such as the radius
of the ring and distance between transmitter and receiver. This
leads to deterministic propagation paths between scatterers
and antennas, yet the overall channel is still random due to
the random scattering coefficient assigned to each effective
scatterer. In our model, the relative angles between successive
linear arrangements of effective scatterers are known, which
leads to deterministic propagation matrices defined below.
At each scattering group, however, the scattering coefficients
are random, which leads to a random channel as seen by
the transmitter and receiver. Each realization of scattering
coefficients leads to a different channel realization that must
be estimated by the receiver to achieve the available MIMO
capacity gain.

Let the nT -dimensional transmit signal be defined as x.
Under the narrowband (frequency flat) assumption, the signal
transmitted from the jth antenna arrives at the ith effective
scatterer of the first group with complex gain coefficient
H1(i, j). Hence, the signals incident on the N1 scatterers of
the first group can be described by y1 = H1x where H1 is
an N1 × nT matrix of gain coefficients. When we describe
scatterers in a group as receiving incident signals, we shall
sometimes speak of the scatterers as nodes that receive the
signals and then scatter the signals toward the next group. We
shall also refer to the process of signal propagation between
an antenna array and scattering group or between adjacent
scattering groups as a single propagation segment, or stage.

Let the scattering coefficient of the ith scatterer in the first
scattering group be γi,1 and the N1 × N1 scattering matrix
for the first group be Γ1 = diag([γ1,1 γ2,1 · · · γN1,1]) where
diag(·) denotes the operator that forms a diagonal matrix out of
the input array. The N1-dimensional signal scattered from the
first group is Γ1H1x, which then propagates to the next group
of scatterers according to propagation matrix H2. Hence, the
signals incident on the second group of scatterers are described
by y2 = H2Γ1H1x. Following this logic, the signal at the nth

scattering group is

yn = HnΓn−1Hn−1Γn−2 · · ·H2Γ1H1x = H̃nx (1)

where
H̃n = HnΓn−1Hn−1Γn−2 · · ·H1. (2)

Finally, the signal at the receive array is

yR = HN+1ΓNHNΓN−1 · · ·H2Γ1H1x + n

= H̃N+1x + n (3)

where n is a vector of zero-mean additive white Gaussian
noise with independent and identically distributed (i.i.d) circu-
larly symmetric complex Gaussian entries normalized to unit
variance. Since the γ’s are the scattering coefficients of effec-
tive scatterers that represent the contributions of many actual
scatterers, it is appropriate to model the γ’s as independent and
complex Gaussian, which is known as the Rayleigh scattering
model [32].

Shortly, we will make the common assumption that a fixed
amount of transmit power, PT , is evenly distributed among the
transmit antennas. Under this constraint, the total propagation
matrix, H̃N+1, is usually normalized such that the average
SNR at each receiver element is PT /Pn where Pn = 1
is the normalized per-antenna noise power just described.
This constraint can be enforced by requiring the reflection
coefficients at each scattering stage to satisfy

Nk∑
i=1

E[|γi,k|2] = 1. (4)

As seen in Fig. 1, it is assumed that all scatterers within
a group lie on a straight line and that the transmit and
receive arrays are linear. It is also assumed that the transmit
array is in the far field of the first scattering group, that
the (n − 1)th scattering group is in the far field of the nth

scattering group, and that the N th scattering group is in the
far field of the receive array. Nonlinear scatterer and antenna
geometries are possible, but the results below depend on the
array’s effective length, which is more easily demonstrated by
beginning with a linear array. Furthermore, the linear scatterer
geometry still allows any angular scattering power profile
to be implemented. For multipath that spans a large angle
spread, the assumption that scatterers or transmit elements lie
on a straight line obviously means that the signals from some
scattering or transmitting elements must propagate farther than
others. The narrowband approximation, however, assumes that
the disparity in distance traveled is small compared to the
reciprocal of the temporal signal bandwidth. When combined,
the far-field and narrowband assumptions force propagation
path loss to be nearly constant across all scatterers in a group.

Since the propagation of any one segment of the model is
a direct path from one set of nodes to the next, the entries for
any given Hn are deterministic. For example, defining the jth

transmit antenna to be at an angle θj to the line normal to the
first line of scatterers, the above assumptions yield

H1 =

⎡
⎢⎢⎢⎣

ejk1d ejk2d . . . ejknT
d

ejk12d ejk22d ejknT
2d

...
. . .

...
ejk1N1d ejk2N1d . . . ejknT

N1d

⎤
⎥⎥⎥⎦ (5)

where d is the spacing between receiving nodes in the first
group and kj = 2π

λ sin(θj) is the spatial frequency of the
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plane wave inbound from the jth transmit antenna. Hence, H1

is the array manifold matrix for a uniform linear array with
receive node spacing d. The fact that the entries of H1 have
equal amplitude and can be expressed as phase shifts is a direct
consequence of the far-field and narrowband assumptions. The
procedure for defining H1 can be repeated for any Hn with
the (n − 1)th scattering group acting in the role of transmit
array.

Each Hn is deterministic, but in the presence of ran-
dom scattering, HnΓn−1 is random. The diagonal entries of
Γn−1 are independent complex Gaussian random variables
representing the reflection coefficients of the previous stage’s
scatterers; hence, the signal received at the nth stage is a
linear sum of complex random variables. Furthermore, (5)
implies that the jth diagonal entry of Γn−1 is the amplitude
of a complex sinusoid with spatial frequency kj , which means
that the signal received at the nth stage is a random process
with power spectral density (PSD) defined by the diagonal of
E[|Γn−1|2]. The absolute bandwidth of the random process
is defined by the maximum and minimum kj , which are
determined by the angular spread. The power spectrum of
the random process determines the correlation between signals
arriving at the receiving nodes.

The fact that the signal at each scattering group is a random
process with power spectral density defined by the spread
and distribution of scatterers in the previous stage leads to
a central theme throughout the rest of this paper. Based on
observations concerning the Karhunen-Loeve representation of
random processes over a finite interval, we will see that the
MIMO EDOF at any stage are determined by the product of
spatial frequency spread and receiving aperture. Moreover, the
EDOF of the entire system will be less than or equal to the
EDOF of any single propagation stage.

B. Model Properties and Examples

We assume that the receiver has perfect channel state infor-
mation but the transmitter does not. Under these conditions,
an appropriate approach is to allocate equal power to each of
the transmitting antennas. This leads to

IN = log2 det
(
InR +

PT

nT
H̃N+1H̃

†
N+1

)
(6)

where IN is the instantaneous mutual information of an N -
stage scattering environment, In is the n-dimensional identity
matrix, and PT is the total power that is divided among all
transmit antennas. Since the matrix H̃N+1 contains random
reflection coefficients for N ≥ 1, the mutual information is
random, and we will generally be interested in average mutual
information. Consider the N = 1 case, which is a single-
scattering abstract model [7], [22], [23], [24], [25], [28] shown
in Fig. 2. Here, the average mutual information is

E[I1] = E

[
log2 det

(
InR +

PT

nT
H2Γ1H1H

†
1Γ

†
1H

†
2

)]
. (7)

The matrix H2 forms linear combinations of the complex
Gaussian elements of Γ1, resulting in H2Γ1 also having
circularly symmetric Gaussian entries. Hence, as in [4], [8],
H2Γ1 can be factored as H2Γ1

D= R1/2
2 WΨ1/2 where W

Γ1

H2H1

Fig. 2. Single-bounce implementation of the propagation model.

is a matrix of i.i.d circularly symmetric Gaussian entries with
unit variance, Ψ1/2 = (E[|Γ1|2])1/2 , and the symbol

D= means
equally distributed. This leads to

E[I1] = E
[
log2 det

(
InR+

PT

nT
R1/2

2 WΨ1/2H1H
†
1Ψ

1/2W†R1/2
2

)]
(8)

where the fact that R1/2
2 = (R1/2

2 )† has been exploited. Using
the property that rank(AB) ≤ min(rank(A), rank(B)), the
EDOF of the system are bounded by (note that rank(R1/2

2 ) =
rank(R2) and rank(R1) = rank(H1))

EDOF ≤ min(rank(R2), rank(WΨ1/2), rank(H1)). (9)

Therefore, the instantaneous EDOF of the MIMO system are
limited by the EDOF of any single propagation stage. In
addition, Jensen’s inequality allows (8) to be bounded by

E[I1] ≤ log2 det

(
InR+

PT

nT
R1/2

2 E
[
WΨ1/2H1H

†
1Ψ

1/2W†
]
R1/2

2

)

= log2 det
(
InR +

PT

nT
R1/2

2 InRR1/2
2

)
= log2 det

(
InR +

PT

nT
R2

)
. (10)

Hence, average mutual information of the single-bounce
model is limited by the eigenvalues of R2.

Since the signal must propagate through each stage sequen-
tially, application of the data processing theorem [33] states
that the mutual information between transmitter and receiver
arrays is upper bounded by the mutual information of any
single propagation stage. In the single-bounce example above,
mutual information is limited by the minimum mutual infor-
mation supported by either of the two propagation segments,
which is to say that

I1 ≤ I0 (11)

where I0 is the mutual information obtained by replacing
the single-bounce scattering group with receive antennas. For
the general case of N scattering groups and average mutual
information, the data-processing argument requires that

E[IN ] ≤ E[IN−1] ≤ · · · I0. (12)

Thus, we observe that the average mutual information of the
N -group progressive scattering model is limited not only by
the spatial correlation of the final propagation segment, but
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also by the spatial correlation of all previous segments. In
other words, E[IN ] is limited by the propagation segment with
the worst eigenvalues.

III. EFFECTIVE DEGREES OF FREEDOM AND THE

APERTURE-BANDWIDTH PRODUCT

The signal incident on the first scattering group is y1 =
H1x. Noting that the columns of H1 are complex sinusoids
sampled at an interval d, we see that y1 is a sum of complex
sinusoids with random amplitudes. Therefore, the signal in-
cident on the first scattering group is a random process with
PSD defined by the average power of the elements of x. For
independent Gaussian signaling on each transmit antenna, the
random vector y1 is complex Gaussian due to being a linear
combination of x. The covariance matrix of y1 is

E[y1y
†
1] = H1E[x1x

†
1]H

†
1 = H1

(
PT

nT
I
)

H†
1; (13)

hence, we can interpret y1 as samples of a zero-mean,
stationary Gaussian random process with uniform PSD equal
to PT /nT .

The signal incident on the second scattering group is y2 =
H2Γ1H1x. Again, noting that the columns of H2 are complex
sinusoids sampled at an interval d, we see that y2 is also a sum
of complex sinusoids with random amplitudes. These random
amplitudes are the signals scattered from the first set of
effective scatterers, which are described by Γ1H1x = Γ1y1.
The signal incident on the second scattering group is also a
random process, but now the PSD is defined by the average
power of the elements of Γ1y1. Let the pth entry on the
diagonal of Γ1 be γp,1 and the pth entry of y1 be y1(p),
then the correlation between any two elements of Γ1y1 is

E[γp,1y1(p)γ∗
q,1y

∗
1(q)] = E[γp,1γ

∗
q,1]E[y1(p)y∗

1(q)]

=

{
E[|γp,1|2]E[|y1(p)|2], p = q

0 p �= q.

(14)

Using (14) and defining a vector of average scattered powers
as

Ψ1 =
[
E[|γ1,1|2]E[|y1(1)|2] E[|γ2,1|2]E[|y1(2)|2] · · ·

E[|γNs,1|2]E[|y1(Ns)|2]
]†

(15)

the covariance matrix of y2 is

E[y2y
†
2] = H2E[Γ1y1y

†
1Γ

†
1]H

†
2

= H2diag(Ψ1)H
†
2. (16)

We can now interpret y2 as consisting of samples of a
zero-mean, stationary random process with PSD equal to
the elements of Ψ1. Each element of Ψ1 consists of a
contribution from the average power incident on the first set
of scatterers and a contribution from the scattering coefficient.
Since y1 consists of samples of a stationary random process,
the elements of y1 all have the same average power. Therefore,
the shape of the PSD of the random processes observed by
the second scattering group is controlled by statistics of the
first group’s scattering coefficients.

Continuing in this manner, we can show that the signal
incident on any scattering group or on the receive array is
a random process with PSD defined by the previous group’s
spread and scattering profile. We now describe how the band-
width and observation interval of each propagation segment
control the EDOF of that segment. We also make general
comments concerning the interaction between multiple prop-
agation segments and the EDOF of a progressive-scattering
scenario.

The KL expansion represents a random process with a
weighted sum of orthonormal functions with uncorrelated
coefficients. For example, the orthonormal functions and co-
efficients for a zero-mean random process are defined by the
solutions to

λiφi(x) =
∫ L

0

Ky(x, x1)φi(x1)dx1 (17)

where
Ky(x, x1) = E[y(x)y(x1)]. (18)

Two interesting properties of the KL expansion can be ex-
ploited to estimate the number of non-trivial solutions to
(17) and the form of the solutions when the interval L is
large [34], [35]. First, when a stationary random process with
bandwidth B is observed or represented over a finite aperture
L, there are approximately (BL + 1) significant eigenvalues
in the KL representation where BL is the aperture-bandwidth
product. Second, when the random process is stationary and
the observation interval is large, the eigenfunctions become
evenly spaced sinusoids whose corresponding eigenvalues
are proportional to the process’ PSD at that frequency. For
the current problem of estimating the EDOF of a MIMO
propagation matrix, we saw above that the signal received
at the end of each propagation segment is a random process
with PSD defined by the previous scattering group’s spread
and scattering profile. The spatial bandwidth spanned by the
random process of a given segment is defined by the span of
frequencies seen in the H matrix for that stage. For example,
the spatial bandwidth of the random process y1 is defined as

B1 =
1
2π

(kmax − kmin) (19)

where kmax and kmin are the maximum and minimum spatial
frequencies used in the matrix H1 (see (5)). The spatial
aperture of a given stage is defined by the number of receiving
nodes and the sample spacing seen in that stage’s H matrix.
For example, in (5) the sample interval is d and the number of
receiving nodes is N1, resulting in an aperture of L1 = N1d.
The first (B1L1 + 1) eigenvalues contribute to that segment’s
capacity while the remaining eigenvalues are too small to
make a significant contribution.

While the spatial bandwidth and observation interval of
the nth segment determine the EDOF for the nth segment,
the second KL property above indicates the values that the
eigenvalues will take. Each eigenvalue represents a fraction
of the total average power in the random process. The first
eigenvalue represents the most powerful region of width Δf
possible. The second eigenvalue represents the second-most
powerful region of width Δf possible, and so on. Each
eigenvalue is proportional to the area under the PSD that it
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represents. If the PSD is uniform, then the eigenvalues of the
covariance matrix will be uniform. If the PSD is non-uniform,
the eigenvalues will follow the non-uniform shape.

We have described the essential physical parameters and
processes that determine the EDOF of a MIMO system. The
results of Section II describe the relationship between overall
system EDOF and the EDOF of individual propagation stages.
The results of this section quantify the relationship between
EDOF of individual stages and the propagation physics of
that stage. In a progressive-scattering scenario, there is inter-
action between the eigenvalues of the individual propagation
segments. A rigorous treatment of this situation requires
the theory of products of random matrices and Lyapunov
exponents [28], [36]. However, some basic comments can be
made. In the following comments, ordered eigenvalues refers
to ordering instantaneous eigenvalues from largest to smallest.
Hence, the average of the ordered eigenvalues means that
the largest eigenvalues taken from multiple realizations have
been averaged, the second-largest eigenvalues have also been
averaged, and so on to produce an averaged instantaneous
eigenspectrum. The comments are:

• For the N = 0 case, there is no multiple-stage interaction
and no random scattering, and the average of the ordered
eigenvalues of the system are identical to the eigenvalues
of the receive correlation matrix, leading to instantaneous
capacity that equals mean capacity.

• For N ≥ 1, (9) shows that the EDOF of the system will
be equal to the minimum of the EDOF of any single
propagation segment. The non-zero eigenvalues tend to
become more non-uniform as more stages are added.

• For N ≥ 1, if any given stage has an aperture-bandwidth
product much less than the aperture-bandwidth products
of all other stages, the average of the ordered eigenvalues
of the system tend to follow the eigenvalues of that stage.
Consequently, average mutual information will approach
the mutual information of that stage. This is particularly
important for keyhole channels (N ≥ 2 with rank of at
least one segment ≈ 1).

• For N = 1, if the transmit-to-scatterer segment exhibits
zero correlation, the average of the ordered eigenvalues
of the system will approach the eigenvalues of the receive
covariance matrix. This conclusion is a specific case
of the previous property. Furthermore, as the number
of scatterers in the scattering group becomes large,
the instantaneous eigenvalues of the system approach
the eigenvalues of the receive covariance matrix almost
surely (as seen in [4]).

IV. RESULTS

In this section, we set up the abstract progressive scattering
model to represent various propagation channels found in
the literature. In the following, all spatial frequencies are
normalized to wavelength spacing. Thus, if a spatial frequency
is fs = 1

λ sin θ, the normalized spatial frequency is λfs =
sin θ. If a receive array observes multipath arrivals over the
full range of angles from −π/2 to π/2 (due to the symmetry of
a linear array, additional angles need not be considered), this
convention leads to a normalized spatial frequency bandwidth
equal to two.
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Fig. 3. Covariance matrix eigenvalues vs. instantaneous eigenvalues for a
green-field scenario with variable spacing between receive antennas.
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Fig. 4. Covariance matrix eigenvalues vs. averaged instantaneous eigenvalues
for a single-bounce scenario with equal aperture-bandwidth products on the
transmit and receive segments.

First, consider the N = 0 case where no multipath propaga-
tion exists. With no multipath propagation, the instantaneous
mutual information of the system is equal to the average
mutual information because there are no mechanisms in the
propagation physics that cause randomness. In Fig. 3 we see
that the eigenvalues (EV) begin to sharply decrease at the
point where the eigenvalue number approaches the product
of system array aperture and spatial bandwidth, BL. The
simulation used to produce Fig. 3 used 12 transmitting and
12 receiving antennas, and the receive antenna spacing for
the two curves was 0.5 and 0.3 wavelengths. The aperture-
bandwidth product for the two cases was 12 and seven as
indicated in the plot. In these results, a uniform power spectral
density was applied, which explains why the eigenvalues are
nearly flat until dropping off around the EDOF predicted by
the aperture-bandwidth product. The properties of the KL
representation being exploited here are asymptotic properties
that become valid at large aperture-bandwidth product. If
many more antennas were available and aperture-bandwidth
product was increased, the drop-off in eigenvalues would be
sharper. For practical antenna arrays, however, the drop-off is
smoothed. The peak eigenvalue level decreases with increasing
aperture-bandwidth product due to the constant receiver power
collected by a fixed number of receive antennas. Therefore,
when the EDOF decrease, the same total received power is
concentrated within fewer eigenvalues.

A single-bounce scenario is shown in Fig. 4. The number
of transmit and receive antennas was 12 while the number of
effective scatterers was 100. The separation between scattering
nodes in the first propagation stage was equal to 0.06 and
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Fig. 5. Covariance matrix eigenvalues vs. averaged instantaneous eigenvalues
for a single-bounce scenario with unequal aperture-bandwidth products on the
transmit and receive segments.

0.035 wavelengths for the two cases shown and the receive
array antenna spacing was 0.5 and 0.3 wavelengths. These
spacings led to identical aperture-bandwidth products at the
two propagation stages. These products are seen in Fig. 4 to
be 12 and seven. Figure 4 shows the eigenvalues of the receive
covariance matrix. The eigenvalues of the covariance matrix at
the scattering nodes (not shown) have the same shape, but are
larger because 100 scattering nodes collect more total energy
than the 12 receive antennas. The averaged eigenvalue curve is
obtained by ordering the eigenvalues from largest to smallest
for each channel realization. The largest eigenvalues of each
realization are then averaged together, the second largest are
averaged together, and so on.

Due to the KL properties described earlier, the eigenvalues
of the covariance matrix are relatively flat in accordance with
the flat PSD of the propagation processes. It is interesting to
see that the number of nonzero instantaneous eigenvalues is
strictly limited to less than the number of nonzero eigenvalues
of the covariance matrices. However, the instantaneous eigen-
values are not identical to the covariance eigenvalues as they
were in Fig. 3. This is due to the random scattering present
in the single-bounce model. Since the reflection coefficients
are random, each realization of the random channel has a
particular path or paths that are dominant despite the uniform
scattering profile that makes all paths equal on average. The
largest instantaneous eigenvalue will always represent the
dominant path, leading to non-uniform instantaneous eigen-
values.

A single-bounce scenario is also investigated in Fig. 5, but
in this case the angle spreads of the two propagation segments
are allowed to differ. The receive array spacing was held
constant at 0.5 wavelengths. The spatial bandwidth observed
by the first scattering group due to signals arriving from the
transmit array was assumed to be the full bandwidth of two
for all cases. In the first case, the aperture-bandwidth products
of the two segments are both 12. The eigenvalues of the
covariance matrix for the first segment are higher than those of
the receive segment because there are more scattering nodes
than receive antennas. Hence, although the average incident
power is unity for both segments, the scatterers in the first
segment collect more total energy than the 12 receivers in the
receive segment. As the spatial bandwidth of the second (re-
ceive) propagation segment is reduced, the aperture-bandwidth
product of the second segment reduces to seven and two. It is
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Fig. 6. Capacity of random channel realizations versus number of scatterers,
Ns, making up the channel and the number of transmit antennas.

clear that the number of nonzero instantaneous eigenvalues is
limited by the segment with the worst correlation properties.
These results indicate that the EDOF of the overall system
is approximately equal to the minimum aperture-bandwidth
product of any of the propagation stages.

In [4], a case was shown where the instantaneous capacity
converged almost surely to the mean capacity for the case of
spatial correlation at the receive array but perfectly uncorre-
lated transmit elements. If this were the case in Fig. 5, we
would see instantaneous eigenvalues equal to the covariance
eigenvalues as in Fig. 3. The result in [4] was obtained using
asymptotic properties of large random matrices, which in
our model implies a large number of scatterers and transmit
elements. Consider the situation where the aperture-bandwidth
product of the transmit side is much larger than the aperture-
bandwidth product on the receive side. This implies that the
receiver correlation is the limiting factor in capacity. Next,
assume that the number of scatterers, and therefore the number
of unique propagation paths, is approximately equal to the
receiver-side aperture bandwidth product. In this case, the
number of propagation paths is approximately the same as the
EDOF. Since each scatterer has a random reflection coefficient,
there will always be dominant paths, leading to instantaneous
eigenvalues that don’t conform to the spatial PSD that governs
the propagation. In other words, the instantaneous spatial
spectrum does not equal the expected spatial spectrum. As
the number of scatterers increases, however, the situation
changes. All of the scattered power must be represented in
the eigenvalues of the propagation matrix. Therefore, as the
number of scatterers increases beyond the EDOF of the sys-
tem, each eigenvalue must represent the contributions of more
than one scatterer. As the number of scatterers becomes large,
each eigenvalue must represent the contributions of many
propagation paths. When many propagation paths contribute
to a single eigenmode, the individual fluctuations of paths
will be smoothed. This leads to instantaneous eigenvalues that
approach the eigenvalues of the covariance matrix.

The effect of increasing the number of scatterers and
transmitters for fixed receive-side aperture-bandwidth product
is shown in Fig. 6. In Fig. 6, the number of scattering and
transmit elements was varied from 100 to 1000 (the number of
transmitters must increase with the number of scatterers to pre-
vent spatial correlation on the transmit side). The receive-side
aperture-bandwidth product was six. The aperture-bandwidth
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Fig. 7. Covariance matrix eigenvalues vs. averaged instantaneous eigenvalues
for a double-bounce scenario with varying aperture-bandwidth product in the
second propagation segment. As this product becomes small, the channel
becomes a keyhole channel with limited MIMO gain.

product of the first propagation segment was equal to the
number of scatterers, Ns. For each case, capacity is evaluated
over five realizations of the channel. The solid line shows the
upper bound on average mutual information obtained through
Jensen’s inequality using the eigenvalues of the receive co-
variance matrix. Since the receiver-side correlation function
is fixed, the bound curve is identical for both cases. For
100 scatterers, it is seen that the mean of the realizations
approaches the capacity bound, which is a result of the
overall system being limited by the receiver-side propagation.
As the number of scatterers increases, however, the random
realizations become less variable and more tightly follow the
upper bound. For 1000 scatterers, the random realizations
are in agreement with the almost-sure convergence described
in [4]. In fact, for this case the random realization curves
are barely distinguishable due to their being within the line
thickness of the bound curve.

Based on this analysis, we can gain additional insight into
the result presented in [4]. At first, the result is counterintuitive
in that many different channels could be realized that conform
to the channel’s correlation properties. For example, it is sta-
tistically possible for only a single scatterer to have a non-zero
reflection coefficient. This would only leave one propagation
path, which clearly does not provide the richness needed for
MIMO gain. We can now see, however, that the large-matrix
approximation implies a large number of scatterers, and as the
number of scatterers increases, the smoothing effect described
above occurs. In other words, the correlation function defines
the required multipath angle spread and spatial power profile.
The large-matrix approximation requires that the channel be
rich not only in angle spread, but also in the number of
scatterers, which makes it increasingly unlikely for the channel
to be as atypical as in the example above.

Finally, we consider a propagation scenario with two scat-
tering groups in Figs. 7 and 8. In Fig. 7, the number of
scatterers in each group is 25 while there are 12 transmit and
12 receive antennas. The spacing between scatterers is 0.24
wavelengths and the spacing between receive antennas is 0.5
wavelengths. The aperture-bandwidth products for the first and
third stages are both equal to 12, which implies rich scattering
and wide angle spread. In the first case, the aperture-bandwidth
product for the second stage is also 12, which leads to many
nonzero instantaneous eigenvalues with uneven average distri-
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product of the middle stage of a double-bounce scenario is reduced. For small
aperture-bandwidth product, the channel becomes a so-called keyhole channel.

bution. In the second case, the normalized spatial bandwidth
of the second stage is decreased to 1.2, which decreases the
aperture-bandwidth product to seven. The number of nonzero
instantaneous eigenvalues is approximately seven in this case
despite the rich scattering around the transmitter and receiver.
Finally, the aperture-bandwidth product is further reduced to
approximately two with the corresponding decrease in nonzero
instantaneous eigenvalues.

As the aperture-bandwidth product of the second propaga-
tion stage in Fig. 7 is reduced from 12 to two, the number
of parallel communication modes decreases proportionately.
For smaller aperture-bandwidth product, this double-bounce
model becomes a keyhole channel [5], [6], [7], [22], which
is well known to have poor MIMO gain despite favorable
correlation properties at the transmit and receive arrays. The
instantaneous rank of the overall propagation matrix is limited
by the minimum aperture-bandwidth product of any propaga-
tion stage, which gives further intuition about the performance
of channels such as keyhole channels. The effect on mutual
information of changing the aperture-bandwidth product of
the second propagation stage is presented in Fig. 8. We have
also reduced the number of transmit and receive antennas to 6
to further demonstrate that our conclusions are applicable to
more realistic antenna arrays. In Fig. 8, we show upper bounds
on capacity determined by the eigenvalues of the spatial
covariance matrix for each of the three propagation segments.
As the angle spread of the second segment is reduced, so
do the corresponding bound Cu

1 and instantaneous capacity
curves. When the second stage’s aperture-bandwidth product
is much less than the other stages, it becomes the bottleneck in
the system, which is now a keyhole channel. The upper bound
of the second segment also becomes tighter as the disparity
between the capacity of the middle segment and the other
segments increases.

V. CONCLUSIONS

While it has been understood for some time that spatial
correlation limits the EDOF of a multi-antenna communication
system, the relationship between the channel physics and
EDOF have not been fully explored. Furthermore, the poor
capacity properties of keyhole channels have been observed
and modeled, but intuition about how the physics of the
keyhole channel relates to EDOF and capacity has been lack-
ing. In this paper, we have presented an abstract progressive
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scattering model and an aperture-bandwidth product technique
that can be used to explore these relationships for many types
of channels. The model is validated by comparing results for
channels modeled elsewhere in the literature.

Using properties of the KL representation of random
processes, we related the EDOF produced by multipath prop-
agation to the product of spatial frequency bandwidth and
observing interval. Then, using the progressive scattering
model and simple relationships for the rank of products of
matrices, we demonstrated that the instantaneous EDOF of a
multi-antenna system are limited by the minimum aperture-
bandwidth product of any single propagation segment. Fur-
thermore, when the aperture-bandwidth product of a single
stage is much less than the aperture-bandwidth product of
all other stages, mean capacity is bounded by the capacity
of that stage. As the disparity between aperture-bandwidth
products becomes larger, the bound becomes tighter. These
properties provide physical intuition about the known behavior
of channels such as keyhole channels and single-bounce
channels without transmitter-side spatial correlation.
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